Computation of the Smith Form for Multivariate Polynomial Matrices Using Maple

Show more

References

[1] H. H. Rosenbrock, “State Space and Multivariable Theory,” Nelson-Wiley, London, 1970.

[2] T. Kailath, “Linear Sys-tems,” Prentice-Hall, Englewood Cliffs, 1980.

[3] A. Fabianska and A. Quadrat, “Applications of the Quillen-Suslin Theo-rem to Multidimensional Systems Theory,” Technical Report 6126, INRIA, Sophia Antipolis, 2007.

[4] D. Quillen, “Projective Modules over Polynomial Rings,” Inventiones Mathematicae, Vol. 36, 1976, pp. 167-171.
doi:10.1007/BF01390008

[5] A. Suslin, “Projective modules over Polynomial Rings Are Free,” Soviet Mathematics—Doklady, Vol. 17, No. 4, 1976, pp. 1160-1164.

[6] M. Frost and C. Storey, “Equivalence of a Matrix over R[s; z] with Its Smith Form,” International Journal of Control, Vol. 28, No. 5, 1979, pp. 665-671.
doi:10.1080/00207177808922487

[7] M. Morf, B. Levy and S. Kung, “New Results in 2-D Systems Theory: Part I: 2-D Polynomial Matrices, Factorization and Coprimeness,” Proceedings of the IEEE, Vol. 65, No. 6, 1977, pp. 861-872.
doi:10.1109/PROC.1977.10582

[8] E. Lee and S. Zak, “Smith Forms over R[z1; z2],” IEEE Transactions on Auto-matic Control, Vol. 28, No. 1, 1983, pp. 115-118. doi:10.1109/TAC.1983.1103118

[9] M. Frost and M. S. Boudellioua, “Some Further Results Concerning Matrices with Elements in a Polynomial Ring,” International Journal of Control, Vol. 43, No. 5, 1986, pp. 1543-1555. doi:10.1080/00207178608933558

[10] Z. Lin, M. S. Boudel-lioua and L. Xu, “On the Equivalence and Factorization of Multivariate Polynomial Matrices,” Proceedings of the 2006 International Symposium of Circuits and Systems, Island of Kos, 21-24 May 2006, p. 4914.

[11] M. S. Boudellioua and A. Quadrat, “Serre’s Reduction of Linear Functional Systems,” Mathematics in Computer Science, Vol. 4, No. 2, 2010, pp. 289-312.
doi:10.1007/s11786-010-0057-y