AMPC  Vol.2 No.1 , March 2012
TPR Study of Core-Shell Fe@Fe3O4 Nanoparticles Supported on Activated Carbon and Carbon Nanotubes
ABSTRACT
Core-shell nanoparticles Fe@Fe3O4 supported on activated carbon (AC) and carbon nanotubes (CNTs) have been studied by H2 temperature-programmed reduction (TPR). Nanoparticles with size of 6.5 nm were synthesized by iron(II) oleate thermal decomposition and were supported on activated carbon and carbon nanotubes by colloid deposition method. The nanoparticles Fe@Fe3O4 are characterized by TEM and IR. Reduction of nanoparticles on AC starts at 140?C, whereas reduction of nanoparticles on CNTs starts at 200?C. Moreover, gasification of CNTs with methane releasing starts at 450?C, whereas gasification of AC is negligible at temperatures up to 800?C. All these findings illustrate a strong difference in the interaction between nanoparticles and the support material for AC and CNTs.

Cite this paper
I. Bychko, Y. Kalishyn and P. Strizhak, "TPR Study of Core-Shell Fe@Fe3O4 Nanoparticles Supported on Activated Carbon and Carbon Nanotubes," Advances in Materials Physics and Chemistry, Vol. 2 No. 1, 2012, pp. 17-22. doi: 10.4236/ampc.2012.21003.
References
[1]   P. Li, D. Miser, S. Rabiei, S. Yadav and M. Hajaligol, “The Removal of Carbon Monoxide by Iron Oxide Nanoparticles,” Applied Catalysis B, Vol. 43, No. 2, 2003, pp. 151-162. doi:10.1016/S0926-3373(02)00297-7

[2]   T. Rostovshchikova, V. Smirnov, O. Kiseleva, V. Yushcenko, M. Tzodikov, Yu. Maksimov, et al., “Acidic and Catalytic Properties of Silica Modified by Iron Oxide Nanoparticles,” Catalysis Today, Vol. 152, No. 1-4, 2010, pp. 48-53. doi:10.1016/j.cattod.2009.10.017

[3]   M. Bahome, L. Jewel, D. Hildebrandt, D. Glasser and N. Coville, “Fischer-Tropsch Synthesis over Iron Catalysts Supported on Carbon Nanotubes,” Applied Catalysis A, Vol. 287, No. 1, 2005, pp. 60-67. doi:10.1016/j.apcata.2005.03.029

[4]   L. Guczi, G. Stefler, O. Geszti, Zs. Koppany, Z. Kónya, é. Molnár, M. Urbán and I. Kiricsi, “CO Hydrogenation over Cobalt and Iron Catalysts Supported over Multiwall Carbon Nanotubes: Effect of Preparation,” Journal of Catalysis, Vol. 244, No. 1, 2006, pp. 24-32. doi:10.1016/j.jcat.2006.08.012

[5]   J. Garcia, H. T. Gomes, P. Serp, P. Kalck, J. L. Figueire-do and J. L. Faria, “Platinum Catalysts Supported on MWNT for Catalytic Wet Air Oxidation of Nitrogen Containing Compounds,” Catalysis Today, Vol. 102-103, 2005, pp. 101-109. doi:10.1016/j.cattod.2005.02.013

[6]   M. Dry, “The Fisher-Tropsh Synthesis,” In: J. R. Anderson and M. Boudart, Eds., Catalysis Science and Technology, Springer, New York, 1981, pp. 159-256.

[7]   P. Serp, M. Corrias and P. Kalck, “Carbon Nanotubes and Nanofibers in Catalysis,” Applied Catalysis A, Vol. 253, No. 2, 2003, pp. 337-358. doi:10.1016/S0926-860X(03)00549-0

[8]   H. Marsh, E. A. Heintz and F. Rodriquez-Reinoso, “In- troduction to Carbon Technologies,” Universidad de Ali- cante, Alicante, 1997.

[9]   F. Rodriguez-Reinoso, “The Role of Carbon Materials in Heterogeneous Catalysis,” Carbon, Vol. 36, No. 3, 1998, pp. 159-175. doi:10.1016/S0008-6223(97)00173-5

[10]   H. T. Gomes, P. V. Samant, P. Serp, P. Kalck, J. L. Figu- eiredo and J. L Faria, “Carbon Nanotubes and Xerogels as Supports of Well-Dispersed Pt Catalysts for Environ- mental Applications,” Applied Catalysis B, Vol. 54, No. 3, 2004, pp. 175-182. doi:10.1016/j.apcatb.2004.06.009

[11]   C. N. R. Rao, B. C. Satishkumar, A. Govindaraj and M. Nath, “Nanotubes,” ChemPhysChem, Vol. 2, No. 2, 2001, pp. 75-105. doi:10.1002/1439-7641(20010216)2:2<78::AID-CPHC78>3.0.CO;2-7

[12]   B. Rajesh, K. Ravindranathan, J. M. Bonard, N. X. Xanthopoulos, H. J. Mathieu and B. Viswanathan, “Carbon Nanotubes Generated from Template Carbonization of Poly-phenyl Acetylene as the Support for Electrooxidation of Methanol,” The Journal of Physical Chemistry B, Vol. 107, No. 12, 2003, pp. 2701-2708. doi:10.1021/jp0219350

[13]   S.-F. Yin, Q.-H. Zhang, B.-Q. Xu, W.-X. Zhu, C.-F. Ng and C.-T. Au, “Investigation on the Ca-talysis of COx-Free Hydrogen Generation from Ammonia,” Journal of Catalysis, Vol. 224, No. 2, 2004, pp. 384-396. doi:10.1016/j.jcat.2004.03.008

[14]   C.-Y. Lu and M.-Y. Wey, “The Performance of CNT as Catalyst Support on CO Oxidation at Low Temperature,” Fuel, Vol. 86, No. 7-8, 2007, pp. 1153-1161. doi:10.1016/j.fuel.2006.09.022

[15]   M. Zaman, A. Khodadi and Y. Mortazavi, “Fischer-Tropsch Synthesis over Cobalt Dispersed on Carbon Nanotubes- Based Supports and Activated Carbon,” Fuel Processing Technology, Vol. 90, No. 10, 2007, pp. 1214-1219. doi:10.1016/j.fuproc.2009.05.026

[16]   D. L. Lee, Y. H. Kim, X.-L. Zhang and Y. S. Kang, “Preparation of Monodisperse Co and Fe Nanoparticle Using Precursor of M2+-Oleate2 (M = Co, Fe),” Current Applied Physics, Vol. 6, No. 4, 2006, pp. 786-790. doi:10.1016/j.cap.2005.04.040

[17]   V. O. Khavrus, N. V. Lemesh, S. V. Gordijchuk, A. I. Tripolsky, T. S. Ivashchenko, M. M. Biliy and P. E. Strizhak, “Chemical Catalytic Vapor Deposition (CCVD) Synthesis of Carbon Nanotubes by Decomposition of Ethylene on Metal (Ni, Co, Fe) Nanoparticles,” Reaction Kinetics and Catalysis Letters, Vol. 93, No. 2, 2008, pp. 295-303. doi:10.1007/s11144-008-5225-6

[18]   S. Stors?ter, B. T?tdal, J. C. Walmsley, B. Steinar Tanem and A. Holmen, “Characterization of Alumina-, Silica-, and Titania-Supported Cobalt Fischer-Tropsch Catalysts,” Journal of Catalysis, Vol. 236, No. 1, 2005, pp. 139-152.

[19]   Y. Wu, H. Yu, F. Peng and H. Wang, “Facile Synthesis of Porous Hollow Iron Oxide Nanoparticles Supported on Carbon Nanotubes,” Materials Letters, Vol. 67, No. 1, 2012, pp. 245-247. doi:10.1016/j.matlet.2011.09.097

[20]   W. K. Jozwiak, E. Kaczmarek, T. P. Maniecki, W. Ignaczak and W. Maniukiewicz, “Reduction Behavior of Iron Oxides in Hydro-gen and Carbon Monoxide Atmospheres,” Applied Catalysis A, Vol. 326, No. 1, 2007, pp. 17-27. doi:10.1016/j.apcata.2007.03.021

[21]   B. H. Davis, “Fischer-Tropsch Synthesis Reaction Mecha- nisms for Iron Catalysts,” Catalysis Today, Vol. 141, No. 1-2, 2009, pp. 25-33. doi:10.1016/j.cattod.2008.03.005

[22]   M. C. Román-Martínez, D. Cazorla-Amorós, A. Linares- Solano and C. Salinas-Martínez de Lecea, “TPD and TPR Characterization of Carbonaceous Supports and Pt/C Ca- talysts,” Carbon, Vol. 31, No. 6, 1993, pp. 895-902. doi:10.1016/0008-6223(93)90190-L

[23]   M. Trepanier, A. K. Dalai and N. Abatzoglou, “Synthesis of CNT-Supported Cobalt Nanoparticle Catalysts Using a Microemulsion Technique: Role of Nanoparticle Size on Reducibility, Activity and Selectivity in Fischer-Tropsch Reactions,” Applied Catalysis A, Vol. 374, No. 1-2, 2010, pp. 79-86.

[24]   A. Tavasoli, K. Sadagiani, F. Khorashe, A. A. Seifkordi, A. A. Rohani and A. Nakhaeipour, “Cobalt Supported on Carbon Nanotubes—A Promising Novel Fischer-Tropsch Synthesis Catalyst,” Fuel Processing Technology, Vol. 89, No. 5, 2008, pp. 491-498. doi:10.1016/j.fuproc.2007.09.008

[25]   W. Chen, Z. Fan, X. Pan and X. Bao, “Effect of Confinement in Carbon Nanotubes on the Activity of Fischer-Tropsh Iron Catalysts,” Journal of the American Chemical Society, Vol. 130, No. 29, 2008, pp. 9414-9419. doi:10.1021/ja8008192

 
 
Top