IJOC  Vol.2 No.1 , March 2012
Sulfuric Acid Immobilized on Silica Gel as Highly Efficient and Heterogeneous Catalyst for the One-Pot Synthesis of 2,4,5-Triaryl-1H-imidazoles
ABSTRACT
Application of sulfuric acid immobilized on silica gel as an efficient and benign catalyst has been explored in the syn-thesis of 2,4,5-Triaryl-1H-imidazoles via condensation reaction of benzil or benzoin, aldehyde and ammonium acetate. The key advantages of this process are high yields, cost effectiveness of catalyst, easy work-up, purification of products by non-chromatographic method and the reusability of the H2SO4.SiO2 catalyst.

Cite this paper
B. Maleki, H. Keshvari Shirvan, F. Taimazi and E. Akbarzadeh, "Sulfuric Acid Immobilized on Silica Gel as Highly Efficient and Heterogeneous Catalyst for the One-Pot Synthesis of 2,4,5-Triaryl-1H-imidazoles," International Journal of Organic Chemistry, Vol. 2 No. 1, 2012, pp. 93-99. doi: 10.4236/ijoc.2012.21015.
References
[1]   D. M. D’Souza and T. J. J. Mueller, “Multi-Component Syntheses of Heterocycles by Transition-Metal Catalysis,” Chemical Society Reviews, Vol. 36, No. 7, 2007, pp. 1095-1108. doi:10.1039/b608235c

[2]   A. Domling, “Recent Developments in Isocyanide Based Multicomponent Reactions in Applied Chemistry,” Chemical Reviews, Vol. 106, 2006, pp. 17-89. doi:10.1021/cr0505728

[3]   X. Yu, X. Pan and J. Wu, “An Efficient Route to Diverse H-pyrazolo[5,1-a]isoquinolines via Sequential Multi-Component/Cross-Coupling Reactions,” Te-trahedron, Vol. 67, No. 6, 2011, pp. 1145-1149. doi:10.1016/j.tet.2010.12.005

[4]   C. Kalinski, H. Lemoine, J. Schmidt, C. Burdack, J. Kolb and M. Umkehrer, “Multicom-ponent Reactions as a Powerful Tool for Generic Drug Synthesis,” Synthesis, Vol. 24, 2008, pp. 4007-4011. doi:10.1055/s-0028-1083239

[5]   L. S. Gadekar, S. R. Mane, S. S. Katkar, B. R. Arbad and M. K. Lande, “Scolecite as an Efficient Heterogeneous Catalyst for the Synthesis of 2,4,5-Triarylimidazoles,” Central European Journal of Chemi-stry, Vol. 7, 2009, pp. 550-554. doi:10.2478/s11532-009-0050-y

[6]   B. Radziszewski, “Ueber die Constitution des Lophins und verwandter Verbindungen,” Chemische Berichte, Vol. 15, 1882, pp. 1493-1496. doi:10.1002/cber.18820150207

[7]   F. Japp and H. Robinson, “Beziehungen der Molekularvolumina zur Atomverkettung,” Chemische Berichte, Vol. 15, 1882, pp. 1268-1270. doi:10.1002/cber.188201501272

[8]   R. S. Joshi, P. G. Mand-hane, M. U. Shaikh, R. S. Kale and C. H. Gill, “Potassium Di-hydrogen Phosphate Catalyzed One-Pot Synthesis of 2,4,5-Triaryl-1H-imidazoles,” Chinese Chemical Letters, Vol. 21, No. 4, 2010, pp. 429-432. doi:10.1016/j.cclet.2009.11.012

[9]   J. F. Zhou, X. G. Gong, H. Q. Zhu and F. X. Zhu, “Solvent-Free and Catalyst-Free Method for the Synthesis of 2,4,5-Triarylimidazoles under Microwave Irradiation,” Chinese Chemical Letters, Vol. 20, No. 10, 2009, pp. 1198-1120. doi:10.1016/j.cclet.2009.05.027

[10]   J. F. Zhou, G. X. Gong, X. J. Sun and Y. L. Zhu, “Facile Method for One-Step Synthesis of 2,4,5-Triarylimida- zoles under Cata-lyst-Free, Solvent-Free, and Microwave-Irradiation Conditions,” Synthetic Communications, Vol. 40, 2010, pp.1134-1141. doi:10.1080/00397910903043025

[11]   S. A. Siddiqui, U. C. Narkhede, S. S. Palimkar, T. Daniel, R. J. Lahoti and K. V. Srinivasan, “Room Temperature Ionic liquid Promoted Improved and Rapid Synthesis of 2,4,5-Triaryl Imidazoles from Aryl Aldehydes and 1,2- Diketones or α-Hydroxyketone,” Te-trahedron, Vol. 61, 2005, pp. 3539-3544. doi:10.1016/j.tet.2005.01.116

[12]   K. F. Shelke, S. B. Sapkal and M. S. Shingare, “Ultrasound-Assisted One-Pot Synthesis of 2,4,5-Triarylimi- dazole Derivatives Catalyzed by Ceric (IV) Ammonium Nitrate in Aqueous Media,” Chinese Chemical Letters, Vol. 20, 2009, pp. 283-286. doi:10.1016/j.cclet.2008.11.033

[13]   J. Sangshetti, N. Kokare, S. Kotharkara and D. J. Shinde, “One-Pot Efficient Synthesis of 2-Aryl-1-arylm ethyl-1H- benzimidazoles and 2,4,5-Triaryl-1H-imidazoles Using Oxalic Acid Catalyst,” Syn-thesis, No. 18, 2007, pp. 2829-2834.

[14]   C. Yu, M. Lei, W. Su and Y. Xie, “Europium Triflate-Catalyzed One-Pot Synthesis of 2,4,5-Trisubsti- tuted-1H-imidazoles via a Three-component Condensation,” Synthetic Communications, Vol. 37, 2007, pp. 3301-3308. doi:10.1080/00397910701483589

[15]   A. R. Khosropour, “Synthesis of 2,4,5-Trisubstitute dimidazoles Catalyzed by [Hmim]HSO4 as a Powerful Br?nsted Acidic Ionic liquid,” Canadian Journal of Chemistry, Vol. 86, 2008, pp. 264-269. doi:10.1139/v08-009

[16]   G. V. M. Sharma, Y. Jyothi and P. S. Lakshmi, “Efficient Room-Temperature Synthesis of Tri- and Tetrasubstituted Imidazoles Catalyzed by ZrCl4,” Synthetic Communications, Vol. 36, No. 19-21, 2006, pp. 2991-2996. doi:10.1080/00397910600773825

[17]   L. M. Wang, Y. H. Wang, H. Tian, Y. Yao, J. Shao and B. Liu, “Ytterbium Triflate as an Efficient Catalyst for One-Pot Synthesis of Substituted Imidazoles Through Three-Component Condensation of Benzil, Aldehydes and Ammonium Acetate,” Journal of Fluorine Chemistry, Vol. 127, No. 12, 2006, pp. 1570-1573. doi:10.1016/j.jfluchem.2006.08.005

[18]   M. M. Heravi, K. Bakhtiari, H. A. Oskooie and S. Taheri, “Synthesis of 2,4,5-Triaryl-Imidazoles Catalyzed by NiCl2?6H2O Under He-terogeneous System,” Journal of Molecular Catalysis A: Chemical, Vol. 263, No. 1-2, 2007, pp. 279-281. doi:10.1016/j.molcata.2006.08.070

[19]   J. N. Sangshetti, D. B. Shinde, N. D. Kokare and S. A. Kotharkar, “Sodium Bisulfite as an Efficient and Inexpensive Catalyst for the One-Pot Synthesis of 2,4,5-Tri- aryl-1H-imidazoles from Benzil or Benzoin and Aromatic Aldehydes,” Monatshefte für Chemie, Vol. 139, No. 2, 2008, pp. 125-127. doi:10.1007/s00706-007-0766-3

[20]   M. Kidwai, P. Mothsra, V. Bansal and R. Goyal, “Efficient Elemental Iodine Catalyzed One-Pot Synthesis of 2,4,5-Triarylimidazoles,” Monatshefte für Chemie, Vol. 137, No. 9, 2006, pp. 1189-1194. doi:10.1007/s00706-006-0518-9

[21]   J. Safari, S. D. Khalili, M. Rezaei, S. H. Banitaba and F. Meshkani, “Nanocrystalline Magnesium Oxide: A Novel and Ef?cient Catalyst for Facile Synthesis of 2,4,5- Trisubstitutedimidazole Derivatives,” Mo-natshefte für Chemie, Vol. 141, No. 12, 2010, pp. 1339-1345. doi:10.1007/s00706-010-0397-y

[22]   N. D. Kokare, J. N. Sangshetti and D. B. Shinde, “One-Pot Efficient Synthesis of 2-Aryl-1-Arylmethyl- 1h-Benzimidazoles and 2,4,5-Triaryl-1h-Imidazoles Using Oxalic Acid Catalyst,” Syn-thesis, No. 18, 2007, pp. 2829-2834.

[23]   A. Shaabani and A. Rahmati, “Silica Sulfuric Acid as an Efficient and Recoverable Catalyst for the Synthesis of Trisubstituted Imidazoles,” Journal of Molecular Catalysis A: Chemical, Vol. 249, No. 1-2, 2006, pp. 246-248. doi:10.1016/j.molcata.2006.01.006

[24]   J. Wang, R. Mason, D. V. Derveer, F. Feng and X. R. Bu, “Convenient Preparation of a Novel Class of Imidazo[1,5-a]pyridines: Decisive Role by Ammonium Acetate in Chemoselectivity,” Journal of Organic Chemistry, Vol. 68, No. 13, 2003, pp. 5415-5418. doi:10.1021/jo0342020

[25]   S. Samai, G. C. Nandi, P. Singh and M. S. Singh, “L-Proline: An Efficient Catalyst for the One-Pot Synthesis of 2,4,5-Trisubstituted and 1,2,4,5-Tetrasubstituted Imidazoles,” Tetrahedron, Vol. 65, No. 49, 2009, pp. 10155-10161. doi:10.1016/j.tet.2009.10.019

[26]   X. C. Wang, H. P. Gong, Z. J. Quan, L. Li and H. L. Ye, “PEG-400 as an Efficient Reaction Medium for the Synthesis of 2,4,5-Triaryl-1H-Imidazoles and 1,2,4,5-Tetra- aryl-1H-Imidazoles,” Chinese Chemical Letters, Vol. 20, 2009, pp. 44-47. doi:10.1016/j.cclet.2008.10.005

[27]   D. Song, C. Liu, S. Zhang and D. Luo, “One-Pot Synthesis of 2,4,5-Triarylimidazoles Catalyzed by Copper (II) Trifluoroacetate under Solvent-Free Conditions,” Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, Vol. 40, No. 3, 2010, pp. 145- 147.

[28]   M. V. Chary, N. C. Keerthysri, S. V. N. Vupallapati, N. Lingaiah and S. Kantevari, “Te-trabutylammoniumbromide (TBAB) in Isopropanol: An Ef?cient, Novel, Neutral and Recyclable Catalytic System for the Synthesis of 2,4,5-Trisubstitutedimidazoles,” Catalysis Communications, Vol. 9, No. 10, 2008, pp. 2013-2017. doi:10.1016/j.catcom.2008.03.037

[29]   J. Safari, S. D. Khalili and S. H. Banitaba, “A Novel and an Efficient Catalyst for One-Pot Synthesis of 2,4,5-Trisubstituted Imidazoles by Using Microwave Irradiation Under Solvent-Free Conditions,” Journal of Chemical Sciences, Vol. 122, No. 3, 2010, pp. 437-441. doi:10.1007/s12039-010-0051-6

[30]   S. D. Sharma, P. Haza-rika and D. Konwar, “An Efficient and One-Pot Synthesis of 2,4,5-Trisubstituted and 1,2,4,5-Tetrasubstituted Imidazoles Catalyzed by InCl3. 3H2O,” Tetrahedron Letters, Vol. 49, No. 14, 2008, pp. 2216- 2220. doi:10.1016/j.tetlet.2008.02.053

[31]   A. R. Khosropour, “Ul-trasound-Promoted Greener Synthesis of 2,4,5-Trisubstituted Imidazoles Catalyzed by Zr(acac)4 under Ambient Conditions,” Ultrasonics Sonochemistry, Vol. 15, No. 5, 2008, pp. 659-664. doi:10.1016/j.ultsonch.2007.12.005

[32]   F. K. Behbahani, T. Yektanezhad and A. R. Khorrami, “Anhydrous FePO4: A Green and Cost-Effective Catalyst for the One-Pot Three Component Synthesis of 2,4,5- Triarylated,” Heterocycles, Vol. 81, No. 10, 2010, pp. 2313-2321. doi:10.3987/COM-10-12019

[33]   V. S. V. Satyanarayana and A. Sivakumar, “An Efficient and Novel One-Pot Synthesis of 2,4,5-Triaryl- 1H-imi- dazoles Catalyzed by UO2(NO3)2?6H2O under Heterogeneous Conditions,” Chem-ical Papers, Vol. 65, No. 4, 2011, pp. 519-526. doi:10.2478/s11696-011-0028-z

[34]   W. M. Nelson, P. T. Anastas and T. C. Williamson, “Green Chemistry,” Oxford University Press, Oxford, 1998, p. 200.

[35]   K. Tanaka and F. Toda, “Solvent-Free Organic Synthesis,” Chemical Reviews, Vol. 100, No. 3, 2000, pp. 1025- 1074. doi:10.1021/cr940089p

[36]   J. H. Clark, “Solid Acids for Green Chemistry,” Accounts of Chemical Research, Vol. 35, No. 9, 2002, pp. 791-794. doi:10.1021/ar010072a

[37]   A. Habibi, E. Sheikhhosseini, M. Bigdeli, S. Balalaie and E. Farrokhi, “Solvent Free Synthesis of α, α'-Bis-(substi- tuted-benzylidene)cycloalkanones Using Co-valently Anchored Sulfonic Acid on Silica Gel (SiO2-R-SO3H) as an Efficient and Reusable Heterogeneous” International Journal of Organic Chemistry, Vol. 1, 2011, pp. 143-147. doi:10.4236/ijoc.2011.14021

[38]   N. C. Marziano, L. Ronchin, C. Tortato, S. Ronchin and A. Vavasori, “Selective Oxidations by Nitrosating Agents: Part 2: Oxidations of Alcohols and Ke-tones over Solid Acid Aatalysts,” Journal of Molecular Catalysis A: Chemical, Vol. 235, 2005, pp. 26-34. doi:10.1016/j.molcata.2005.03.008

[39]   A. K. Chakraborti, B. Singh, S. V. Chankeshwara and A. R. Patel, “Protic Acid Im-mobilized on Solid Support as an Extremely Efficient Recyclable Catalyst System for a Direct and Atom Economical Esterification of Carboxylic Acids with Alcohols,” Journal of Organic Chemistry, Vol. 74, No. 16, 2009, pp. 5967-5974. doi:10.1021/jo900614s

[40]   J. Zhou, F. Chen, Q. B. Wang, B. Zhang, L. Y. Zhang and A. Yusulf, “H2SO4-SiO2: Highly Effi-cient and Novel Catalyst for the Ferrier-Type Glycosylation,” Chinese Chemical Letters, Vol. 21, No. 8, 2010, pp. 922-923. doi:10.1016/j.cclet.2010.03.013

[41]   B. Roy and B. Mukho-padhyay, “Sulfuric Acid Immobilized on Silica: An Excellent Catalyst for Fischer Type Glycosylation,” Tetrahedron Letters, Vol. 48, No. 22, 2007, pp. 3783-3787. doi:10.1016/j.tetlet.2007.03.165

[42]   B. Mukhopadhyay, “Sulfuric Acid Immobilized on Silica: An Efficient Promoter for One-Pot Acetalation-Acetylation of Sugar Derivatives,” Tetrahedron Letters, Vol. 47, No. 26, 2006, pp. 4337-4340. doi:10.1016/j.tetlet.2006.04.118

 
 
Top