IJOC  Vol.2 No.1 , March 2012
Highly Efficient Synthesis of Novel Fluorine Bearing Quinoline-4-carboxylic Acid and the Related Compounds as Amylolytic Agents
Highly efficient syntheses of novel fluorine bearing quinoline-4-carboxylic acids and the related compounds had been achieved from cyclocondensation of 2-amino-5-fluorophenyl glyoxylic acid 1 with benzoyle asetanilides 2 in boiling DMF, to give the target 3. Decarboxylation of 3 produced 6-fluoro-2-phenyl-3-(substituted amino)-keto-quinolines 4, while that reaction underwent refluxing, afforded 7-fluoro-1-(aryl)-3-phenyl-pyrrolo[3,4-c] quinoline-2,9-diones 5. Structure of the products has been established from their elemental and spectral analysis. All targets exhibited a high to moderate activity against some Aspergillus fungi as amylolytic agents.

Cite this paper
M. S. T. Makki, D. A. Bakhotmah and R. M. Abdel-Rahman, "Highly Efficient Synthesis of Novel Fluorine Bearing Quinoline-4-carboxylic Acid and the Related Compounds as Amylolytic Agents," International Journal of Organic Chemistry, Vol. 2 No. 1, 2012, pp. 49-55. doi: 10.4236/ijoc.2012.21009.
[1]   D. E. Davidson, A. L. Agas, J. L. Brown, F. E. Chapple, R. E. Whitmire and R. N Rossan, “New Tissue Schizontocidal Anti-malarial Drugs,” Bulletin of the World Health Organization, Vol. 59, No. 3, 1981, pp. 463-471.

[2]   M. Kidwai, N. Gupta and K. C. Srivastava, “Synthesis and Antiviral Activity of 3(4'-Methyl Quinolino-2'-Yloxo) 2H Benzopyran-2-Ones,” Indian Drugs, Vol. 30, 1993, pp. 377-380.

[3]   M. Kidwai, N. Negi and P. Misra, “Microwave Assisted Synthesis Of 2,3-Disubstituted-4-thiazolidinones and Their Pharmacological Screening,” Journal of the Indian Chemical Society, Vol. 77, 2000, pp. 46-47.

[4]   M. Baba, M. Okamoto, M. Makino, Y. Kimura, T. Ikenchi, T. Sakaguchi and T. Okamoto, “Potent and Selective Inhibition of Human Immunodeficiency Virus Type 1 Transcription by Piperazinyloxoquinoline Derivatives,” Anti-microbial Agents and Chemotherapy, Vol. 41, No. 6, 1997, pp. 1250-1255.

[5]   M. Baba, M. Okamoto, M. Kawamura, M. Makino, T. Highashida, T. Takashi, Y. Kimura, T. Ikeuchi, T. Tetsuka and T. Okamoto, “Inhibition of Human Immunodefi-ciency Virus Type 1 Replication and Cytokine Production by Fluoroquinoline Derivatives,” Molecular Pharmacology, Vol. 53, No. 6, 1998, pp. 1097-1103.

[6]   H. Okamoto, T. P. Cujec, M. Okamoto, B. M. Peterlin, M. Baba and T. Okamoto, “Inhibition of the RNA-Dependent Transactivation and Replication of HIV 1 by A Fluoroquinoline Derivative K-37,” Virology, Vol. 272, No. 2, 2000, pp. 402-408. doi:10.1006/viro.2000.0396

[7]   E. De Clereq, “New Developments in Anti-HIV Chemotherapy,” Biochimica et Biophysica Acta, Vol. 1587, No. 2-3, 2002, pp. 258-275.

[8]   X. Wang, K. Yamataka, M. Okamoto, S. Ikeda and M. Baba, “Potent and Selective Inhibition of Tat-Dependent HIV-1 Replication in Chronically Infected Cells by a Novel Naphthalene Derivative JTK-101,” Antimicrobial Agents and Chemotherapy, Vol. 18, 2007, pp. 201-211. doi:10.1021/ol006936u

[9]   H. Amii, Y. Kishikaws and K. Umeyama, “Rh(I)-Catalyzed Cyclization Coupling of N-Aryl Trifluoroacetimidoyl Chlorides with Alkynes: One-pot Synthesis of Fluorinated Quinolines,” Organic Letters, Vol. 3, No. 8, 2001, pp. 1109-1112.

[10]   C. S. Cho, B. H. Oh, J. S. Kim, T. S. Kim and S. C. Shim, “Synthesis of Quinolines via Ruthe-nium-Catalysed Amine Exchange Reaction between Anilines and Trialkylamines,” Chemical Communications, No. 19, 2000, pp. 1885-1886. doi:10.1039/b005966h

[11]   N. D. Obushak, N. T. Pokhodylo, I. T. Krupa and V. S. Matiichuk, “Synthesis of substituted 4-([1,2,4]triazolo- [3,4-b]-[1,3,4]thiadiazol-6-yl)quinolines,” Russian Journal of Organic Chemistry, Vol. 43, No. 8, 2007, pp. 1223-1227. doi:10.1134/S1070428007080246

[12]   M. G. Shevekhgeimer and N. N. Kondrashora, “Synthesis of New Derivatives of 4-Quinolinecarboxylic Acid,” Heterocyclic Chemistry, Vol. 38, No. 2, 2002, pp. 253- 254. doi:10.1023/A:1015363931038

[13]   X. Y. Yu, J. M. Hil, G. Yang, Y. Yu, A. F. Kluge, D. Keith, J. Finn, P. Gallant, J. Sil-verman and A. Lim, “A Series of Quinoline Analogues as Potent Inhibitors of C. albicans Prolyl tRNA Synthetase,” Bioorganic & Medicinal Chemistry Letters, Vol. 11, No. 4, 2001, pp. 541-544. doi:10.1016/S0960-894X(00)00697-1

[14]   Y. Kura-sawa, K. Yoshida, N. Yamazaki, E. Kaji, K. Sa-saki, Y. Za-mami, Y. Sakai, T. Fujii and H. Ito, “Qui- nolone Analogs 11: Synthesis of Novel 4-Quinolone- 3-carbohydrazide Derivatives with Antimalarial Activity,” Journal of Heterocyclic Chemistry, 2011.

[15]   A. Wube, F. Bucar, C. Hochfellner, M. Blunder, R. Bauer and A. Hüfner, “Synthesis of N-Substituted 2-[(1E)-Al- kenyl]-4-(1H)-Quinolone Derivatives as Antimycobacterial Agents against Non-Tubercular Mycobacteria,” European Journal of Medicinal Chemistry, Vol. 46, No. 6, 2011, pp. 2091-2101. doi:10.1016/j.ejmech.2011.02.062

[16]   M. A. Ibrahim, H. M. Hassanin, Y. A. Gabr and Y. AlNamer, “Novel Heterocyclic Derivatives of Pyrano[3,2- c]quinolinone from 3-(1-Ethy1-4-hydroxy-2-oxo-2(1H)- quino-lin-3-yl)-3-oxopropanoic Acid,” European Journal of Chemistry, Vol. 1, No. 3, 2010, pp. 195-199. doi:10.5155/eurjchem.1.3.195-199.91

[17]   E. A. Mohammed, R. M. Abdle-Rahman, A. A. Seayed and M. Ismail, “Synthesis of 3-Heteroaryl-4-hydroxy-benzocarbostyrils,” Journal of the Indian Chemical Society, Vol. 69, No. 2, 1992, pp. 472-475.

[18]   E. A. Mohammed, R. M. Abdel-Rahman, A. M. Tawfik and M. Ismail, “Behavior of Some 3-Formyl-4-hydroxy Carboxylic towards Amines, Hydrazines and Hydroxylamine,” Pakistan Journal of Science and Industrial Research, Vol. 36, 1993, pp. 223-227.

[19]   E. A. Mohammed, R. M. Ab-del-Rahman, Z. El-Gendy and M. Ismail, “Some Reactions of 3-Formyl-1,8-na- phthyl ridine-2-one,” Annales de Quimica, Vol. 89, No. 2, 1993, pp. 246-253.

[20]   E. Kawsari and M. M. Mohammadi, “Ultrasound Promoted Synthesis of Quinolines Using Basic Ionic Liquids in Aqueous Media as a Green Pro-cedure,” Ultrasonics Sonochemistry, Vol. 18, No. 1, 2011, pp. 447-454. doi:10.1016/j.ultsonch.2010.07.020

[21]   S. Abu-El-Wafa, R. M. Abdel-Rahman and Z. El-Gendy, “Spectroscopic Studies of Some Antilide Compounds Derived from Ethyl Benzoyl Ace-tate,” Egyptian Journal of Chemistry, Vol. 33, No. 5, 1990, pp. 387-395.

[22]   R. M. Abdel-Rahman, “Synthesis and Anti Human Immune Virus Activity of Some New Fluorine Containing Substituted-3-thioxo-1,2,4-triazin-5-ones,” Farmaco, Vol. 46, 1991, pp. 379-389.

[23]   R. M. Abdlel-Rahman, “Synthesis of Some New Fluorine Bearing Trisubstituted 3-Thioxo-1,2,4-triazin-5-ones as Potential Anticancer Agents,” Farmaco, Vol. 47, No. 3, 1992, pp. 319-326;

[24]   R. M. Ab-del-Rahman, “Role of Uncondensed 1,2,4-Triazine Compounds and Related Heterocyclic Systems as therapeutic agents. A Review, Part XV,” Pharmazie, Vol. 56, No. 1, 2001, pp. 18-22;

[25]   R. M. Abdel-Rahman, “Role of Uncondensed 1,2,4-Triazine Derivatives as Biocidal Plant Protection Agents,” Pharmazie, Vol. 56, No. 1, 2001, pp. 195-204.

[26]   R. M. Abdel-Rahman and M. S. Abdel-Malik, “Synthesis of Some New 3,6-Diheteroaryl-1,2,4-triazin-5-ones and Their Effect on Amylolytic Activity of Some Fungi,” Pakistan Journal of Science and Industrial Research, Vol. 33, No. 4, 1990, pp. 142-147.

[27]   N. Nelson, “A Photometric Adaptation of the Somogyi Method for the Determination of Glucose,” Journal of Biological Chemistry, Vol. 153, No. 2, 1944, pp. 375-380.

[28]   M. Somogyi, “A New Reagent for the Determi-nation of Sugars,” Journal of Biological Chemistry, Vol. 160, 1945, pp. 61-68.

[29]   S. Brautigam, D. Dennewald, M. Schurmann, J. Lutje-Spelberg, W. Pitner and D. Weuster-Botz, “Whole-Cell Biocatalysis: Evaluation of New Hydrophobic Ionic Liquids for Efficient Asymmetric Reduction of Prochiral Ketones,” Enzyme and Microbial Technology, Vol. 45, No. 4, 2009, pp. 310-316. doi:10.1016/j.enzmictec.2009.06.015

[30]   R. Gupta, P. Gigras, H. Mohapatra, V. K. Goswami and B. Chauhan, “Microbial α-Amylses: A Biotechnological Prespective,” Process Biochemistry, Vol. 38, No. 11, 2003, pp. 1-18.

[31]   B. K. Park, N. R. Kitteringham and P. M. O’Neill, “Metabolism of Fluorine-Containing Drugs,” Annual Review of Pharmacology and Toxicology, Vol. 41, 2001, pp. 443-470. doi:10.1146/annurev.pharmtox.41.1.443

[32]   R. Filler and R. Saha, “Fluorine in Medicinal Chemistry: A Century of Progress and a 60-Year Retrospective of Selected Highlights,” Future Medicinal Chemistry, Vol. 1, No. 5, 2009, pp. 777-791. doi:10.4155/fmc.09.65