OJGen  Vol.2 No.1 , March 2012
QTL for floral stem lignin content and degradability in three recombinant inbred line (RIL) progenies of Arabidopsis thaliana and search for candidate genes involved in cell wall biosynthesis and degradability
Deciphering the genetic determinants involved in cell wall assembly is a strategic issue for breeding programs that target both ruminant feeding and biofuel production. The Arabidopsis thaliana model system has great potentials to elucidate the genetic determinants involved in cell wall component biosynthesis and those involved in the regulation cascades allowing their coordinated assembly. QTL for biomass quality related traits (cell wall content, lignin content, and cell wall degradability) were mapped in the three Arabidopsis RIL progenies Bay0 × Shahdara, Bur0 × Col0, and Blh1 × Col0. Overall, 40 QTL were detected for these traits, explaining up to 33 and 12% of the observed phenotypic variation for lignin content and cell wall degradability respectively. Major QTL hotspots were mapped on chromosome 1 (position 5 Mbp), chromosome 4 (position 1 Mbp), and chromosome 5 (position 3 Mbp). A putative candidate gene set (82 genes) was considered including those previously described as involved in cell wall phenolic component biosynthesis, their regulation factors, and genes involved in lignified tissue patterning. Colocalisations observed (according to the reference sequence of Col0) between the detected QTL and these candidate genes did not prioritize any of the three gene groups (monolignol biosynthesis, transcription factors, lignified tissue patterning). Colocalizations were thus observed for 57% of monolignol biosynthesis related genes, 55% of the transcription factors considered, and 66% of genes considered to be involved in lignified tissue patterning and assembly. Colocalizations were observed for at least one member of all investigated gene families, except WRKY transcription factors. Colocalizations were also shown with several miRNA putatively involved in the regulation of lignifying tissue assembly. Taking into account the QTL shown in the Bur0 × Col0 progeny, allelic variations were shown in the MYB32, MYB58, MYB75, GRAS SCARECROW, AtC3H14 zinc finger, SHINE2, and IFL1 genes and in the AtMIR397a. Given that the list of candidate genes is not complete, and because the QTL support intervals encompassed genes of still unknown function, it is still not clear whether one of the selected candidates is responsible for the effect of a detected QTL. Mutant investigation and positional cloning steps are likely essential to clearly determine the causal mechanism involved in cell wall degradability variation.

Cite this paper
Chavigneau, H. , Goué, N. , Delaunay, S. , Courtial, A. , Jouanin, L. , Reymond, M. , Méchin, V. and Barrière, Y. (2012) QTL for floral stem lignin content and degradability in three recombinant inbred line (RIL) progenies of Arabidopsis thaliana and search for candidate genes involved in cell wall biosynthesis and degradability. Open Journal of Genetics, 2, 7-30. doi: 10.4236/ojgen.2012.21002.
[1]   Argillier, O., Barrière, Y., Dardenne, P., Emile, J. and Hébert, Y. (1998) Genotypic variation for in vitro criteria and relationships with in vivo digestibility in forage maize hybrids. Plant Breeding, 117, 437-441. doi:10.1111/j.1439-0523.1998.tb01969.x

[2]   Barrière, Y., Surault, F. and Emile, J.C. (2003) Genetic variation of silage maize ingestibility in dairy cattle. Animal Research, 52, 489-500. doi:10.1051/animres:2003042

[3]   Carroll, A. and Somerville, C. (2009) Cellulosic biofuels. Annual Review of Plant Biology, 60, 165-182. doi:10.1146/annurev.arplant.043008.092125

[4]   Harris, D. and DeBolt, S. (2010) Synthesis, regulation and utili-zation of lignocellulosic biomass. Plant Biotechnology Journal, 8, 244-262. doi:10.1111/j.1467-7652.2009.00481.x

[5]   Li, X., Xi-menes, E., Kim, Y., Slininger, M., Meilan, R., Ladisch, M. and Chapple, C. (2010) Lignin monomer composition affects Arabidopsis cellwall degradability after liquid hot water pretreatment. Biotechnology for Biofuels, 3, 27. doi:10.1186/1754-6834-3-27

[6]   Barriere, Y., Méchin, V., Lafarguette, F., Manicacci, D., Guillon, F., Wang, H., Lauressergues, D., Pichon, M., Bosio, D. and Tatout, C. (2009) Toward the discovery of maize cell wall genes involved in silage quality and capacity to biofuel production. Maydica, 54, 161-198.

[7]   Grabber, J.H., Mertens, D.R., Kim, H., Funk, C., Lu, F.C. and Ralph, J. (2009) Cell wall fermentation kinetics are impacted more by lignin content and ferulate cross-linking than by lignin composition. Journal of the Science of Food and Agriculture, 89, 122-129. doi:10.1002/jsfa.3418

[8]   Zhong, R.Q. and Ye, Z.H. (2007) Regulation of cell wall biosynthesis. Current Opinion in Plant Biology, 10, 564- 572. doi:10.1016/j.pbi.2007.09.001

[9]   Zhong, R.Q. and Ye, Z.H. (2009) Transcriptional regulation of lignin biosynthesis. Plant Signaling and Behavior, 4, 1-7. doi:10.4161/psb.4.11.9875

[10]   Goujon, T., Sibout, R., Eudes, A., MacKay, J. and Jouanin, L. (2003) Genes involved in the biosynthesis of lignin precursors in Arabidopsis thaliana. Plant Physiology and Biochemistry, 41, 677-687. doi:10.1016/S0981-9428(03)00095-0

[11]   Ruel, K., Berrio-Sierra, J., Derikvand, M.M., Pollet, B., Thevenin, J., Lapierre, C., Jouanin, L. and Joseleau, J.P. (2009) Impact of CCR1 silencing on the assembly of lignified secondary walls in Arabidopsis thaliana. New Phytologist, 184, 99-113. doi:10.1111/j.1469-8137.2009.02951.x

[12]   Berthet, S., Demont-Caulet, N., Pollet, B., Bidzinski, P., Cezard, L., Le Bris, P., Borrega, N., Herve, J., Blondet, E., Balzergue, S., Lapierre, C. and Jouanin, L. (2011) Disruption of LACCASE4 and 17 results in tissue-specific alterations to lignification of Arabidopsis thaliana stems. Plant Cell, 23, 1124-1137. doi:10.1105/tpc.110.082792

[13]   Mir Derikvand, M., Si-erra, J.B., Ruel, K., Pollet, B., Do, C.T., Thevenin, J., Buffard, D., Jouanin, L. and Lapierre, C. (2008) Redirection of the phenylpropanoid pathway to feruloyl malate in Arabidopsis mutants deficient for cinnamoyl-CoA reductase 1. Planta, 227, 943-956. doi:10.1007/s00425-007-0669-x

[14]   Ralph, J., Kim, H., Lu, F., Grabber, J.H., Leplé, J.C., Berrio-Sierra, J., Derikvand, M.M., Jouanin, L., Boerjan, W. and Lapierre, C. (2008) Identification of the structure and origin of a thioacidolysis marker compound for ferulic acid incorporation into angiosperm lignins (and an indicator for cinnamoyl CoA reductase deficiency). Plant Journal, 53, 368-379. doi:10.1111/j.1365-313X.2007.03345.x

[15]   Carpita, N.C. and Mccann, M.C. (2008) Maize and sorghum: genetic resources for bioenergy grasses. Trends in Plant Science, 13, 415-420. doi:10.1016/j.tplants.2008.06.002

[16]   Bosch, M., Mayer, C.D., Cookson, A. and Donnison, I.S. (2011) Identification of genes involved in cell wall biogenesis in grasses by differential gene expression profiling of elongating and nonelongating maize internodes. Journal of Experimental Botany, 62, 3545-3561. doi:10.1093/jxb/err045

[17]   Barriere, Y., Mechin, V., Denoue, D., Bauland, C. and Laborde, J. (2010) QTL for Yield, earliness, and cell wall quality traits in topcross experiments of the F838 × F286 early maize RIL progeny. Crop Science, 50, 1761-1772. doi:10.2135/cropsci2009.11.0671

[18]   Sewell, M.M., Davis, M.F., Tuskan, G.A., Wheeler, N.C., Elam, C.C., Bassoni, D.L. and Neale, D.B. (2002) Identification of QTLs influencing wood property traits in loblolly pine (Pinus taeda L.). II. Chemical wood properties. Theoretical and Applied Genetics, 104, 214-222. doi:10.1007/s001220100697

[19]   Markussen, T., Fla-dung, M., Achere, V., Favre, J.M., Faivre-Rampant, P., Aragones, A., Perez, D.D., Harvengt, L., Espinel, S. and Ritter, E. (2003) Identification of QTLs controlling growth, chemical and physical wood property traits in Pinus pinaster (Ait.). Silvae Genetica, 52, 8-15.

[20]   Pot, D., Rodrigues, J.C., Rozenberg, P., Chantre, G., Tibbits, J., Cahalan, C., Pichavant, F. and Plomion, C. (2006) QTLs and candidate genes for wood properties in maritime pine (Pinus pinaster Ait.). Tree Genetics and Genomes, 2, 10-24. doi:10.1007/s11295-005-0026-9

[21]   Yin, T., Zhang, X., Gunter, L., Priya, R., Sykes, R., Davis, M., Wullschleger, S.D. and Tuskan, G.A. (2010) Differential detection of genetic loci underlying stem and root lignin content in Populus. Plos One, 5, 11. doi:10.1371/journal.pone.0014021

[22]   Freeman, J.S., Whittock, S.P., Potts, B.M. and Vaillancourt, R.E. (2009) QTL influencing growth and wood pro- perties in Eucalyptus globulus. Tree Genetics and Genomes, 5, 713-722. doi:10.1007/s11295-009-0222-0

[23]   Thumma, B.R., Southerton, S.G., Bell, J.C., Owen, J.V., Henery, M.L. and Moran, G.F. (2010) Quantitative trait locus (QTL) analysis of wood quality traits in Eucalyptus nitens. Tree Genetics and Genomes, 6, 305-317. doi:10.1007/s11295-009-0250-9

[24]   Gion, J.M., Ca-rouche, A., Deweer, S., Bedon, F., Pichavant, F., Charpentier, J.P., Bailleres, H., Rozenberg, P., Carocha, V., Ognouabi, N., Verhaegen, D., Grima-Pettenati, J., Vi-gneron, P. and Plomion, C. (2011) Comprehensive genetic dissection of wood properties in a widelygrown tropical tree: Eucalyptus. BMC Genomics, 12, 301.

[25]   Ranjan, P., Yin, T., Zhang, X., Kalluri, U.C., Yang, X., Jawdy, S. and Tuskan, G.A. (2010) Bioinformatics-based identification of candidate genes from QTLs associated with cell wall traits in Populus. Bioenergy Research, 3, 172-182. doi:10.1007/s12155-009-9060-z

[26]   Thomas, J., Guillaumie, S., Verdu, C., Denoue, D., Pichon, M. and Barriere, Y. (2010) Cell wall phenylpropanoid-related gene expression in early maize recombinant inbred lines dif-fering in parental alleles at a major lignin QTL position. Molecular Breeding, 25, 105-124. doi:10.1007/s11032-009-9311-x

[27]   Mouille, G., Wi-tucka-Wall, H., Bruyant, M.P., Loudet, O., Pelletier, S., Rihouey, C., Lerouxel, O., Lerouge, P., Hofte, H. and Pauly, M. (2006) Quantitative trait loci analysis of primary cell wall composition in Arabidopsis. Plant Phy- siology, 141, 1035-1044. doi:10.1104/pp.106.079384

[28]   Barrière, Y., Laperche, A., Barrot, L., Aurel, G., Briand, M. and Jouanin, L. (2005) QTL analysis of lignification and cell wall digestibility in the Bay-0 x Shahdara RIL progeny of Arabidopsis thaliana as a model system for forage plant. Plant Science, 168, 1235-1245. doi:10.1016/j.plantsci.2005.01.001

[29]   Simon, M., Loudet, O., Durand, S., Berard, A., Brunel, D., Sennesal, F.X., Durand-Tardif, M., Pelletier, G. and Camilleri, C. (2008) Quantitative trait loci mapping in five new large recombinant inbred line populations of Arabidopsis thaliana genotyped with consensus singlenucleotide polymorphism markers. Genetics, 178, 2253- 2264. doi:10.1534/genetics.107.083899

[30]   Loudet, O., Chaillou, S., Camilleri, C., Bouchez, D. and Daniel-Vedele, F. (2002) Bay-0 × Shahdara recombinant inbred line population: a powerful tool for the genetic dissection of complex traits in Arabidopsis. Theoretical and Applied Genetics, 104, 1173-1184. doi:10.1007/s00122-001-0825-9

[31]   Goering, H.K. and Van Soest, P.J. (1970) Forage fiber analysis (Apparatus, reagents, procedures and some applications). US Agricultural Research Service, Washington DC, 33-61.

[32]   Dence, C.W. and Lin, S.Y. (1992) The de-termination of lignin. In: Methods in lignin chemistry. Springer-Verlag, Berlin, 33-61. doi:10.1007/978-3-642-74065-7_3

[33]   Hatfield, R.D., Jung, H.J.G., Ralph, J., Buxton, D.R. and Weimer, P.J. (1994) A comparison of the insoluble residues produced by the klason lignin and acid detergent lignin procedures. Journal of the Science of Food and Agriculture, 65, 51-58. doi:10.1002/jsfa.2740650109

[34]   Hall, M.B., Lewis, B.A., VanSoest, P.J. and Chase, L.E. (1997) A simple method for estimation of neutral detergentsoluble fibre. Journal of the Science of Food and Agriculture, 74, 441-449. doi:10.1002/(SICI)1097-0010(199708)74:4<441::AID-JSFA813>3.0.CO;2-C

[35]   Aufrère, J. and Michalet-Doreau, B. (1983) In vivo digestibility and prediction of digestibility of some by-products. Proceedings of an EEC Seminar, Melle Gontrode, 26-29 September, 25-33.

[36]   Struik, P. (1983) Physiology of forage maize (Zea mays L.) in relation to its production and quality. Ph. Dissertation, Agricultural University, Wageningen, 1-252.

[37]   Dolstra, O. and Medema, J.H. (1990) An effective screening method for genetic improvement of cell-wall digestibility in forage maize. Proceedings 15th Congress Maize and Sorghum Section of Eucarpia. Baden, 258- 270.

[38]   Argillier, O., Barrière, Y. and Hébert, Y. (1995) Genetic variation and selection criterion for digestibility traits of forage maize. Euphytica, 82, 175-184. doi:10.1007/BF00027064

[39]   Barrière, Y., Guillet, C., Goffner, D. and Pichon, M. (2003) Genetic variation and breeding strategies for improved cell wall digestibility in annual forage crops. A review. Animal Research, 52, 193-228. doi:10.1051/animres:2003018

[40]   Lila, M. (1977) Influence of drying conditions on evaluation of soluble nitrogen and soluble carbohydrate content of forages—Consequences for trial harvesting. Annales de l’Amélioration des Plantes, 27, 465-475.

[41]   Utz, H. and Melchinger, A. (1996) PLABQTL: a program for composite interval mapping of QTL. Journal of Agricultural Genomics, 2, 1-6.

[42]   Haley, C.S. and Knott, S.A. (1992) A simple regression method for mapping quantita-tive trait loci in line crosses using flanking markers. Heredity, 69, 315-324. doi:10.1038/hdy.1992.131

[43]   Churchill, G.A. and Do-erge, R.W. (1994) Empirical thre- shold values for quan-titative trait mapping. Genetics, 138, 963-971.

[44]   Melchinger, A.E., Utz, H.F. and Sch?n, C.C. (2004) QTL analyses of complex traits with cross validation, bootstrapping and other biometric methods. Euphytica, 137, 1-11. doi:10.1023/B:EUPH.0000040498.48379.68

[45]   Sch?n, C., Utz, H., Groh, S., Truberg, B., Openshaw, S. and Melchinger, A. (2004) Quantitative trait locus mapping based on resampling in a vast maize testcross experiment and its relevance to quantitative genetics for complex traits. Genetics, 167, 485-498. doi:10.1534/genetics.167.1.485

[46]   Kendall, M.G. and Stuart, A. (1961) The advanced theory of statistics. Inference and relationship. 3rd Edition, Griffin, London.

[47]   Lander, E.S. and Botstein, D. (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 121, 185-199.

[48]   Ohtani, M., Nishikubo, N., Xu, B., Yamaguchi, M., Mitsuda, N., Goue, N., Shi, F., Ohme-Takagi, M. and Demura, T. (2011) A NAC domain protein family contributing to the regulation of wood formation in poplar. Plant Journal, 67, 499-512. doi:10.1111/j.1365-313X.2011.04614.x

[49]   Rengel, D., Clemente, H.S., Servant, F., Ladouce, N., Paux, E., Wincker, P., Couloux, A., Sivadon, P. and Grima-Pettenati, J. (2009) A new genomic resource dedicated to wood formation in Eucalyptus. BMC Plant Biol- ogy, 9, 36.

[50]   Obayashi, T., Hayashi, S., Saeki, M., Ohta, H. and Kinoshita, K. (2009) ATTED-II provides coexpressed gene networks for Arabidopsis. Nucleic Acids Research, 37, D987-D991. doi:10.1093/nar/gkn807

[51]   Ko, J.H. and Han, K.H. (2004) Arabidopsis whole-transcriptome profiling defines the features of coordinated regulations that occur during secondary growth. Plant Molecular Bi-ology, 55, 433-453. doi:10.1007/s11103-004-1051-z

[52]   Minic, Z., Jamet, E., San-Clemente, H., Pelletier, S., Renou, J.P., Rihouey, C., Okinyo, D.P., Proux, C., Lerouge, P. and Jouanin, L. (2009) Transcriptomic analysis of Arabidopsis developing stems: A close-up on cell wall genes. BMC Plant Biology, 9, 6. doi:10.1186/1471-2229-9-6

[53]   Wang, H., Avci, U., Nakashima, J., Hahn, M.G., Chen, F. and Dixon, R.A. (2010) Mutation of WRKY transcription factors initiates pith secondary wall formation and increases stem biomass in dicotyledonous plants. Proceedings of the National Academy of Sciences of the United States of America, 107, 22338-22343. doi:10.1073/pnas.1016436107

[54]   Schneeberger, K., Ossowski, S., Ott, F., Klein, J.D., Wang, X., Lanz, C., Smith, L.M., Cao, J., Fitz, J., Warthmann, N., Henz, S.R., Huson, D.H. and Weigel, D. (2011) Reference-guided assembly of four diverse Arabidopsis thaliana genomes. Proceedings of the National Academy of Sciences of the United States of America, 108, 10249-10254. doi:10.1073/pnas.1107739108

[55]   Cao, J., Schneerman, M.C., Ossowski, S., gunther, T., Bender, S., Fitz, J., Koenig, D., Lao, N.T., Stegle, O., lippert, C., wang.xi, Ott, F., Muller, J., Alonso-Blanco, C., Borgwardt, K., Schmid, K. and Weigel, D. (2011) Whole- genome sequencing of multiple Arabidopsis thaliana populations. Nature, 43, 956-963. doi:10.1038/ng.911

[56]   Jones, L., Ennos, A.R. and Turner, S.R. (2001) Cloning and characterization of irregular xylem4 (irx4): A severely lignin-deficient mutant of Arabidopsis. Plant Journal, 26, 205-216. doi:10.1046/j.1365-313x.2001.01021.x

[57]   Sch?ch, G., Goepfert, S., Morant, M., Hehn, A., Meyer, D., Ullmann, P. and Werck-Reichhart, D. (2001) CYP98A3 from Arabidopsis thaliana is a 3’-hydroxylase of phenolic esters, a missing link in the phenylpropanoid pathway. Journal of Biological Chemistry, 276, 36566-36574. doi:10.1074/jbc.M104047200

[58]   Costa, M.A., Collins, R.E., Anterola, A.M., Cochrane, F.C., Davin, L.B. and Lewis, N.G. (2003) An in silico assessment of gene function and organization of the phenylpropanoid pathway metabolic networks in Arabidopsis thaliana and limitations thereof. Phytochemistry, 64, 1097-1112. doi:10.1016/S0031-9422(03)00517-X

[59]   Raes, J., Rohde, A., Christensen, J.H., Van de Peer, Y. and Boerjan, W. (2003) Genomewide characterization of the lignifica-tion toolbox in Arabidopsis. Plant Physiology, 133, 1051-1071. doi:10.1104/pp.103.026484

[60]   Sibout, R., Eudes, A., Pollet, B., Goujon, T., Mila, I., Granier, F., Seguin, A., Lapierre, C. and Jouanin, L. (2003) Expression pattern of two paralogs encoding cinnamyl alcohol dehydrogenases in Arabidopsis. Isolation and characterization of the corresponding mutants. Plant Physiology, 132, 848-860. doi:10.1104/pp.103.021048

[61]   Sibout, R., Eudes, A., Mouille, G., Pollet, B., Lapierre, C., Jouanin, L. and Seguin, A. (2005) Cinnamyl alcohol dehydrogenase-C and -D are the primary genes involved in lignin biosynthesis in the floral stem of Arabidopsis. Plant Cell, 17, 2059-2076. doi:10.1105/tpc.105.030767

[62]   Eudes, A., Pollet, B., Sibout, R., Do, C.T., Seguin, A., Lapierre, C. and Jouanin, L. (2006) Evidence for a role of AtCAD 1 in lignification of elongating stems of Arabidopsis thaliana. Planta, 225, 23-39. doi:10.1007/s00425-006-0326-9

[63]   Bonawitz, N.D. and Chapple, C. (2010) The genetics of lignin biosynthesis: connecting genotype to phenotype. Annual Review of Genetics, 44, 337-363. doi:10.1146/annurev-genet-102209-163508

[64]   Valerio, L., De Meyer, M., Penel, C. and Dunand, C. (2004) Expression analysis of the Arabidopsis peroxidase multigenic family. Phytochemistry, 65, 1331-1342. doi:10.1016/j.phytochem.2004.04.017

[65]   Mccaig, B.C., Meagher, R.B. and Dean, J.F.D. (2005) Gene structure and molecular analysis of the laccase-like multicopper oxidase (LMCO) gene family in Arabidopsis thaliana. Planta, 221, 619-636. doi:10.1007/s00425-004-1472-6

[66]   Ehlting, J., Mattheus, N., Aeschliman, D.S., Li, E.Y., Hamberger, B., Cullis, I.F., Zhuang, J., Kaneda, M., Mansfield, S.D., Samuels, L., Ritland, K., Ellis, B.E., Bohlmann, J. and Douglas, C.J. (2005) Global transcript profiling of primary stems from Arabidopsis thaliana identifies candidate genes for missing links in lignin biosynthesis and transcriptional regulators of fiber differentiation. Plant Journal, 42, 618-640. doi:10.1111/j.1365-313X.2005.02403.x

[67]   Cai, X., Davis, E.J., Ballif, J., Liang, M., Bushman, E., Haroldsen, V., Torabinejad, J. and Wu, Y. (2006) Mutant identification and characterization of the laccase gene family in Arabidopsis. Journal of Experimental Botany, 57, 2563-2569. doi:10.1093/jxb/erl022

[68]   Cosio, C. and Dunand, C. (2009) Specific functions of individual class III peroxidase genes. Journal of Experimental Botany, 60, 391-408. doi:10.1093/jxb/ern318

[69]   Koizumi, K., Yokoyama, R. and Nishitani, K. (2009) Mechanical load induces upregulation of transcripts for a set of genes implicated in secondary wall formation in the supporting tissue of Arabidopsis thaliana. Journal of Plant Research, 122, 651-659. doi:10.1007/s10265-009-0251-7

[70]   Tokunaga, N., Ka-neta, T., Sato, S. and Sato, Y. (2009) Analysis of expression profiles of three peroxidase genes associated with lignification in Arabidopsis thaliana. Physiologia Plantarum, 136, 237-249. doi:10.1111/j.1399-3054.2009.01233.x

[71]   Pedreira, J., Teresa Herrera, M., Zarra, I. and Revilla, G. (2011) The overexpression of AtPrx37, an apoplastic peroxidase, reduces growth in Arabidopsis. Physiologia Plantarum, 141, 177-187. doi:10.1111/j.1399-3054.2010.01427.x

[72]   Fagerstedt, K.V., Kukkola, E.M., Koistinen, V.V., Takahashi, J. and Marjamaa, K. (2010) Cell wall lignin is polymerised by class III secretable plant peroxidases in Norway spruce. Journal of Integrative Plant Biology, 52, 186-194. doi:10.1111/j.1744-7909.2010.00928.x

[73]   Lim, E.K., Jackson, R.G. and Bowles, D.J. (2005) Identification and characterisation of Arabidopsis glycosyltransferases ca-pable of glucosylating coniferyl aldehyde and sinapyl aldehyde. FEBS Letters, 579, 2802-2806. doi:10.1016/j.febslet.2005.04.016

[74]   Escamilla-Trevino, L.L., Chen, W., Card, M.L., Shih, M.C., Cheng, C.L. and Poulton, J.E. (2006) Arabidopsis thaliana beta-glucosidases BGLU45 and BGLU46 hydrolyse monolignol glucosides. Phytochemistry, 67, 1651- 1660. doi:10.1016/j.phytochem.2006.05.022

[75]   Lim, E., Jackson, R. and Bowles, D. (2005) Identification and characterisation of Arabidopsis glycosyltransferases capable of glucosylating coniferyl aldehyde and sinapyl aldehyde. FEBS Letters, 579, 2802-2806. doi:10.1016/j.febslet.2005.04.016

[76]   Lanot, A., Hodge, D., Jackson, R., George, G., Elias, L., Lim, E., Vaistij, F. and Bowles, D. (2006) The glucosyltransferase UGT72E2 is responsible for monolignol 4- O-glucoside production in Arabidopsis thaliana. Plant Journal, 48, 286-295. doi:10.1111/j.1365-313X.2006.02872.x

[77]   Sanchez-Fernandez, R., Davies, T.G.E., Coleman, J.O.D. and Rea, P.A. (2001) The Arabidopsis thaliana ABC protein superfamily, a complete inventory. Journal of Biological Chemistry, 276, 30231-30244. doi:10.1074/jbc.M103104200

[78]   Samuels, A.L., Rensing, K.H., Douglas, C.J., Mansfield, S.D., Dharmawardhana, D.P. and Ellis, B.E. (2002) Cellular machinery of wood production: differentiation of secondary xylem in Pinus contorta var. latifolia. Planta, 216, 72-82. doi:10.1007/s00425-002-0884-4

[79]   Miao, Y.C. and Liu, C.J. (2010) ATP-binding cassette-like transporters are involved in the transport of lignin precursors across plasma and vacuolar membranes. Proceedings of the National Academy of Sciences of the United States of America, 107, 22728-22733. doi:10.1073/pnas.1007747108

[80]   Kaneda, M., Schuetz, M., Lin, B., Chanis, C., Hamberger, B., Western, T., Ehlting, J. and Samuels, A. (2011) ABC transporters coordinately expressed during lignification of Arabidopsis stems include a set of ABCBs associated with auxin transport. Journal of Experimental Botany, 62, 2063-2077. doi:10.1093/jxb/erq416

[81]   Yamaguchi, M., Kubo, M., Fukuda, H. and Demura, T. (2008) Vascular-related nac-domain7 is involved in the differentiation of all types of xylem vessels in Arabidopsis roots and shoots. Plant Journal, 55, 652-664. doi:10.1111/j.1365-313X.2008.03533.x

[82]   Zhong, R.Q., Lee, C., McCarty, R.L. and Ye, Z.H. (2008) A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell, 20, 2763-2782. doi:10.1105/tpc.108.061325

[83]   Sonbol, F.M., Fornale, S., Capellades, M., Encina, A., Tourino, S., Torres, J.L., Rovira, P., Ruel, K., Puigdomenech, P., Rigau, J. and Caparros-Ruiz, D. (2009) The maize ZmMYB42 re-presses the phenylpropanoid pathway and affects the cell wall structure, composition and degradability in Arabidopsis thaliana. Plant Molecular Biology, 70, 283-296. doi:10.1007/s11103-009-9473-2

[84]   Zhou, J., Lee, C., Zhong, R.Q. and Ye, Z.H. (2009) MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis. Plant Cell, 21, 248-266. doi:10.1105/tpc.108.063321

[85]   Zhong, R., Lee, C. and Ye, Z.H. (2010) Global analysis of direct targets of sec-ondary wall NAC master switches in Arabidopsis. Molecular Plant, 3, 1087-1103. doi:10.1093/mp/ssq062

[86]   Yamaguchi, M., Ohtani, M., Mitsuda, N., Kubo, M., Ohme-Takagi, M., Fukuda, H. and Demura, T. (2010) VND-INTERACTING2, a NAC domain transcription factor, negatively regulates xylem vessel formation in Arabidopsis. Plant Cell, 22, 1249-1263. doi:10.1105/tpc.108.064048

[87]   Bonke, M., Thitamadee, S., Mahonen, A.P., Hauser, M.T. and Helariutta, Y. (2003) APL regulates vascular tissue identity in Arabidopsis. Nature, 426, 181-186. doi:10.1038/nature02100

[88]   Zhao, C.S., Avci, U., Grant, E.H., Haigler, C.H. and Beers, E.P. (2008) XND1, a member of the NAC domain family in Arabidopsis thaliana, negatively regulates lignocellulose synthesis and programmed cell death in xylem. Plant Journal, 53, 425-436. doi:10.1111/j.1365-313X.2007.03350.x

[89]   Bhargava, A., Mansfield, S.D., Hall, H.C., Douglas, C.J. and Ellis, B.E. (2010) MYB75 functions in regulation of secondary cell wall formation in the Arabidopsis inflorescence stem. Plant Physiology, 154, 1428-1438. doi:10.1104/pp.110.162735

[90]   Grant, E.H., Fujino, T., Beers, E.P. and Brunner, A.M. (2010) Characterization of NAC domain transcription factors implicated in control of vascular cell differentiation in Arabidopsis and Populus. Planta, 232, 337-352. doi:10.1007/s00425-010-1181-2

[91]   Kawaoka, A. and Ebinuma, H. (2001) Transcriptional control of lignin biosynthesis by tobacco LIM protein. Phytochemistry, 57, 1149-1157. doi:10.1016/S0031-9422(01)00054-1

[92]   Matthews, J., Bhati, M., Lehtomaki, E., Mansfield, R., Cubeddu, L. and MacKay, J. (2009) It takes two to tango: the structure and function of LIM, RING, PHD and MYND domains. Cur-rent Pharmaceutical Design, 15, 3681-3696. doi:10.2174/138161209789271861

[93]   Wu, K.L., Guo, Z.J., Wang, H.H. and Li, J. (2005) The WRKY family of transcription factors in rice and Arabidopsis and their ori-gins. DNA Research, 12, 9-26. doi:10.2174/138161209789271861

[94]   Rushton, P.J., Somssich, I.E., Ringler, P. and Shen, Q.J. (2010) WRKY transcription factors. Trends in Plant Science, 15, 247-258. doi:10.1016/j.tplants.2010.02.006

[95]   Ko, J.H., Kim, W.C. and Han, K.H. (2009) Ectopic expression of MYB46 identifies transcriptional regulatory genes involved in secondary wall biosynthesis in Arabidopsis. Plant Journal, 60, 649-665. doi:10.1111/j.1365-313X.2009.03989.x

[96]   Jakoby, M., Weisshaar, B., Droge-Laser, W., Vicente-Carbajosa, J., Tiedemann, J., Kroj, T. and Parcy, F. (2002) bZIP transcription factors in Arabidopsis. Trends in Plant Science, 7, 106-111. doi:10.1016/S1360-1385(01)02223-3

[97]   Husbands, A., Bell, E.M., Shuai, B., Smith, H.M. and Springer, P.S. (2007) Lateral organ boundaries defines a new family of DNA-binding transcription factors and can interact with specific bHLH proteins. Nucleic Acids Research, 35, 6663-6671. doi:10.1093/nar/gkm775

[98]   Soyano, T., Thitamadee, S., Machida, Y. and Chua, N.H. (2008) Asymmetric leaves2-like19/lateral organ boundaries domain30 and Asl20/Lbd18 regulate tracheary element differentiation in Arabidopsis. Plant Cell, 20, 3359- 3373. doi:10.1105/tpc.108.061796

[99]   Yamaguchi, M., Mitsuda, N., Ohtani, M., Ohme-Takagi, M., Kato, K. and Demura, T. (2011) Vascular-related NAC-domain 7 directly regulates the expression of a broad range of genes for xylem vessel formation. Plant Journal, 66, 579-590. doi:10.1111/j.1365-313X.2011.04514.x

[100]   Yordanov, Y.S., Regan, S. and Busov, V. (2010) Members of the lateral organ boundaries domain transcription factor family are involved in the regulation of secondary growth in Populus. Plant Cell, 22, 3662-3677. doi:10.1105/tpc.110.078634

[101]   Heim, M.A., Jakoby, M., Werber, M., Martin, C., Weisshaar, B. and Bailey, P.C. (2003) The basic helix-loop-helix transcription factor family in plants: A genome-wide study of protein structure and functional diversity. Molecular Biology and Evolution, 20, 735-747. doi:10.1093/molbev/msg088

[102]   Parker, G., Schofield, R., Sundberg, B. and Turner, S. (2003) Isolation of COV1, a gene involved in the regulation of vascular patterning in the stem of Arabidopsis. Development, 130, 2139-2148. doi:10.1242/dev.00441

[103]   Pineau, C., Freydier, A., Ranocha, P., Jauneau, A., Turner, S., Lemonnier, G., Renou, J.P., Tarkowski, P., Sandberg, G., Jouanin, L., Sundberg, B., Boudet, A.M., Goffner, D. and Pichon, M. (2005) HCA: an Arabidopsis mutant exhibiting unusual cambial activity and altered vascular patterning. Plant Journal, 44, 271-289. doi:10.1111/j.1365-313X.2005.02526.x

[104]   Guo, Y., Qin, G., Gu, H. and Qu, L.J. (2009) Dof5.6/ HCA2, a Dof transcription factor gene, regulates interfascicular cambium formation and vascular tissue development in Arabidopsis. Plant Cell, 21, 3518-3534. doi:10.1105/tpc.108.064139

[105]   Rogers, L.A., Dubos, C., Surman, C., Willment, J., Cullis, I.F., Mansfield, S.D. and Campbell, M.M. (2005) Comparison of lignin deposition in three ectopic lignification mutants. New Phytologist, 168, 123-140. doi:10.1111/j.1469-8137.2005.01496.x

[106]   DiLaurenzio, L., WysockaDiller, J., Malamy, J.E., Pysh, L., Helariutta, Y., Freshour, G., Hahn, M.G., Feldmann, K.A. and Benfey, P.N. (1996) The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell, 86, 423-433. doi:10.1016/S0092-8674(00)80115-4

[107]   Lee, H., Kim, B., Song, S.K., Heo, J.O., Yu, N.I., Lee, S.A., Kim, M., Kim, D.G., Sohn, S.O., Lim, C.E., Chang, K.S., Lee, M.M. and Lim, J. (2008) Largescale analysis of the GRAS gene family in Arabidopsis thaliana. Plant Molecular Biology, 67, 659-670. doi:10.1007/s11103-008-9345-1

[108]   Carlsbecker, A., Lee, J.Y., Roberts, C.J., Dettmer, J., Lehesranta, S., Zhou, J., Lindgren, O., Moreno-Risueno, M.A., Vaten, A., Thitamadee, S., Campilho, A., Sebastian, J., Bowman, J.L., Helariutta, Y. and Benfey, P.N. (2010) Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature, 465, 316-321. doi:10.1038/nature08977

[109]   Baima, S., Possenti, M., Matteucci, A., Wisman, E., Altamura, M.M., Ruberti, I. and Morelli, G. (2001) The Arabidopsis ATHB-8 HD-zip protein acts as a differentiation-promoting transcription factor of the vascular meristems. Plant Physiology, 126, 643-655. doi:10.1104/pp.126.2.643

[110]   McConnell, J.R., Emery, J., Eshed, Y., Bao, N., Bowman, J. and Barton, M.K. (2001) Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature, 411, 709-713. doi:10.1038/35079635

[111]   Talbert, P.B., Adler, H.T., Parks, D.W. and Comai, L. (1995) The REVOLUTA gene is necessary for apical meristem development and for limiting cell divisions in the leaves and stems of Arabidopsis thaliana. Development, 121, 2723-2735.

[112]   Ratcliffe, O.J., Riechmann, J.L. and Zhang, J.Z. (2000) Interfascicular fiberless1 is the same gene as revoluta. Plant Cell, 12, 315-317.

[113]   Green, K.A., Prigge, M.J., Katzman, R.B. and Clark, S.E. (2005) CORONA, a member of the class III homeodomain leucine zipper gene family in Arabidopsis, regulates stem cell specification and organogenesis. Plant Cell, 17, 691-704. doi:10.1105/tpc.104.026179

[114]   Ilegems, M., Douet, V., Meylan-Bettex, M., Uyttewaal, M., Brand, L., Bowman, J.L. and Stieger, P.A. (2010) Interplay of auxin, KANADI and Class III HD-ZIP transcription factors in vascular tissue formation. Development, 137, 975-984. doi:10.1242/dev.047662

[115]   Juarez, M.T., Kui, J.S., Thomas, J., Heller, B.A. and Timmermans, M.C.P. (2004) MicroRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature, 428, 84-88. doi:10.1038/nature02363

[116]   Ko, J.H., Prassinos, C. and Han, K.H. (2006) Developmental and seasonal expression of PtaHB1, a Populus gene encoding a class IIIHD-Zip protein, is closely associated with secondary growth and inversely correlated with the level of microRNA (miR166). New Phytologist, 169, 469-478. doi:10.1111/j.1469-8137.2005.01623.x

[117]   Williams, L., Grigg, S.P., Xie, M.T., Christensen, S. and Fletcher, J.C. (2005) Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHD-ZIP target genes. Development, 132, 3657-3668. doi:10.1242/dev.01942

[118]   Liljegren, S.J., Ditta, G.S., Eshed, H.Y., Savidge, B., Bowman, J.L. and Yanofsky, M.F. (2000) SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature, 404, 766-770. doi:10.1038/35008089

[119]   Guillaumie, S., Pichon, M., Martinant, J.P., Bosio, M., Goffner, D. and Barrière, Y. (2007) Differential expression of phenylpropanoid and related genes in brownmidrib bm1, bm2, bm3, and bm4 young near-isogenic maize plants. Planta, 226, 235-250. doi:10.1007/s00425-006-0468-9

[120]   Guillaumie, S., Goffner, D., Barbier, O., Martinant, J.P., Pichon, M. and Barrière, Y. (2008) Expression of cell wall related genes in basal and ear internodes of silking brown-midrib-3, caffeic acid O-methyltransferase (COMT) down-regulated, and normal maize plants. BMC Plant Biology, 8, 71. doi:10.1186/1471-2229-8-71

[121]   Pesquet, E., Korolev, A.V., Calder, G. and Lloyd, C.W. (2010) The micro-tubule-associated protein AtMAP70-5 regulates secondary wall patterning in Arabidopsis wood cells. Current Biology, 20, 744-749. doi:10.1016/j.cub.2010.02.057

[122]   Rengel, D., San-Clemente, H., Servant, F., Ladouce, N., Paux, E., Wincker, P., Couloux, A., Sivadon, P. and Grima-Pettenati, J. (2009) A new genomic resource dedicated to wood formation in Eucalyptus. BMC Plant Biology, 27, 9-36.

[123]   Foucart, C., Jauneau, A., Gion, J.M., Amelot, N., Martinez, Y., Panegos, P., Grima-Pettenati, J. and Sivadon, P. (2009) Overexpression of EgROP1, a Euca-lyptus vascular-expressed Rac-like small GTPase, affects secondary xylem formation in Arabidopsis thaliana. New Phytologist, 183, 1014-1029. doi:10.1111/j.1469-8137.2009.02910.x

[124]   Gu, Y., Wang, Z. and Yang, Z. (2004) ROP/RAC GTPase: an old new master regulator for plant signaling. Current Opinion in Plant Biology, 7, 527-536. doi:10.1016/j.pbi.2004.07.006

[125]   Nibau, C., Wu, H.M. and Cheung, A.Y. (2006) RAC/ROP GTPases: ‘Hubs’ for signal integration and diversification in plants. Trends in Plant Science, 11, 309-315. doi:10.1016/j.tplants.2006.04.003

[126]   Kwon, S.I., Cho, H.J., Jung, J.H., Yoshimoto, K., Shirasu, K. and Park, O.K. (2010) The Rab GTPase RabG3b functions in auto-phagy and contributes to tracheary element differentiation in Arabidopsis. Plant Journal, 64, 151-164.

[127]   Ambavaram, M.M., Krishnan, A., Trijatmiko, K.R. and Pereira, A. (2011) Coordinated activation of cellulose and repression of lignin biosynthesis pathways in rice. Plant Physiology, 155, 916-931. doi:10.1104/pp.110.168641

[128]   Kabbage, M. and Dickman, M. (2008) The BAG proteins: a ubiquitous family of chaperone regulators. Cellular and Molecular Life Sciences, 65, 1390-1402. doi:10.1007/s00018-008-7535-2

[129]   Zhao, C.S., Johnson, B.J., Kositsup, B. and Beers, E.P. (2000) Exploiting secondary growth in Arabidopsis. Construction of xylem and bark cDNA libraries and cloning of three xylem endopeptidases. Plant Physiology, 123, 1185-1196. doi:10.1104/pp.123.3.1185

[130]   Zhong, R.Q. and Ye, Z.H. (2004) amphivasal vascular bundle 1, a gain-of-function mutation of the IFL1/REV gene, is associated with alterations in the polarity of leaves, stems and carpels. Plant and Cell Physiology, 45, 369-385. doi:10.1093/pcp/pch051

[131]   Kim, J., Jung, J.H., Reyes, J.L., Kim, Y.S., Kim, S.Y., Chung, K.S., Kim, J.A., Lee, M., Lee, Y., Kim, V.N., Chua, N.H. and Park, C.M. (2005) microRNA-directed cleavage of ATHB15 mRNA regulates vascular development in Arabidopsis inflorescence stems. Plant Journal, 42, 84-94. doi:10.1111/j.1365-313X.2005.02354.x

[132]   Fahlgren, N., Howell, M.D., Kasschau, K.D., Chapman, E.J., Sullivan, C.M., Cumbie, J.S., Givan, S.A., Law, T.F., Grant, S.R., Dangl, J.L. and Carrington, J.C. (2007) High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of miRNA genes. Plos One, 2, 219. doi:10.1371/journal.pone.0000219

[133]   Yang, T.W., Xue, L.G. and An, L.Z. (2007) Functional diversity of miRNA in plants. Plant Science, 172, 423- 432. doi:10.1016/j.plantsci.2006.10.009

[134]   Abdel-Ghany, S.E. and Pilon, M. (2008) MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis. Journal of Biological Chemistry, 283, 15932- 15945. doi:10.1074/jbc.M801406200

[135]   Jung, H., Mertens, D. and Payne, A. (1997) Correlation of acid detergent lignin and Klason lignin with digestibility of forage dry matter and neutral detergent fiber. Journal of Dairy Science, 80, 1622-1628. doi:10.3168/jds.S0022-0302(97)76093-4

[136]   Barrière, Y., Thomas, J. and Denoue, D. (2008) QTL mapping for lignin content, lignin monomeric composition, p-hydroxycinnamate content, and cell wall digestibility in the maize recombinant inbred line progeny F838 x F286. Plant Science, 175, 585-595. doi:10.1016/j.plantsci.2008.06.009

[137]   Rowe, H.C. and Kliebenstein, D.J. (2008) Complex genetics control natural variation in Arabidopsis thaliana resistance to Botrytis cinerea. Genetics, 180, 2237-2250. doi:10.1534/genetics.108.091439

[138]   Jubault, M., Lariagon, C., Simon, M., Delourme, R. and Man-zanares-Dauleux, M.J. (2008) Identification of quantitative trait loci controlling partial clubroot resistance in new mapping populations of Arabidopsis thaliana. Theoretical and Applied Genetics, 117, 191-202. doi:10.1007/s00122-008-0765-8

[139]   Chabannes, M., Barakate, A., Lapierre, C., Marita, J.M., Ralph, J., Pean, M., Danoun, S., Halpin, C., Grima-Pettenati, J. and Boudet, A.M. (2001) Strong decrease in lig- nin content without significant alteration of plant devel- opment is induced by simultaneous down-regulation of cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydro-genase (CAD) in tobacco plants. Plant Journal, 28, 257-270. doi:10.1046/j.1365-313X.2001.01140.x

[140]   Thumma, B.R., Nolan, M.R., Evans, R. and Moran, G.F. (2005) Polymorphisms in cinnamoyl CoA reductase (CCR) are associated with variation in microfibril angle in Eucalyptus spp. Genetics, 171, 1257-1265. doi:10.1534/genetics.105.042028

[141]   Leplé, J.C., Dauwe, R., Morreel, K., Storme, V., Lapierre, C., Pollet, B., Naumann, A., Kang, K.Y., Kim, H., Ruel, K., Lefebvre, A., Joseleau, J.P., Grima-Pettenati, J., De Rycke, R., ndersson-Gunneras, S., Erban, A., Fehrle, I., Petit-Conil, M., Kopka, J., Polle, A., Messens, E., Sundberg, B., Mans- field, S.D., Ralph, J., Pilate, G. and Boerjan, W. (2007) Downregulation of cinnamoyl-coenzyme a reductase in poplar: Multiple-level phenotyping reveals effects on cell wall polymer metabolism and structure. Pl

[142]   Wadenb?ck, J., von Arnold, S., Egertsdotter, U., Walter, M.H., Grima-Pettenati, J., Goffner, D., Gellerstedt, G., Gullion, T. and Clapham, D. (2008) Lignin biosynthesis in transgenic Norway spruce plants harboring an antisense construct for cinnamoyl CoA reductase (CCR). Transgenic Research, 17, 379-392. doi:10.1007/s11248-007-9113-z

[143]   Tamasloukht, B., Lam, M.S.-J.W.Q., Martinez, Y., Tozo, K., Barbier, O., Jourda, C., Jauneau, A., Borderies, G., Balzergue, S., Renou, J.P., Huguet, S., Martinant, J.P., Tatout, C., Lapierre, C., Barriere, Y., Goffner, D. and Pichon, M. (2011) Char-acterization of a cinnamoyl-CoA reductase 1 (CCR1) mutant in maize: Effects on lignification, fibre development and global gene expression. Jour- nal of Experimental Botany, 62, 3837-3848. doi:10.1093/jxb/err077

[144]   Zhao, Q., Wang, H., Yin, Y., Xu, Y., Chen, F. and Dixon, R.A. (2010) Syringyl lignin biosynthesis is directly regulated by a secondary cell wall master switch. Proceedings of the National Academy of Sciences of the United States of America, 107, 14496-14501. doi:10.1073/pnas.1009170107

[145]   Johanson, U., West, J., Lister, C., Michaels, S., Amasino, R. and Dean, C. (2000) Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science, 290, 344-347. doi:10.1126/science.290.5490.344

[146]   Gazzani, S., Gendall, A.R., Lister, C. and Dean, C. (2003) Analysis of the molecular basis of flowering time variation in Arabidopsis accessions. Plant Physiology, 132, 1107-1114. doi:10.1104/pp.103.021212

[147]   Shindo, C., Aranzana, M.J., Lister, C., Baxter, C., Nicholls, C., Nordborg, M. and Dean, C. (2005) Role of frigida and flowering Locus C in determining variation in flowering time of Arabi-dopsis. Plant Physiology, 138, 1163-1173. doi:10.1104/pp.105.061309

[148]   Goicoechea, M., La-combe, E., Legay, S., Mihaljevic, S., Rech, P., Jauneau, A., Lapierre, C., Pollet, B., Verhaegen, D., Chaubet-Gigot, N. and Grima-Pettenati, J. (2005) EgMYB2, a new transcriptional activator from Eucalyptus xylem, regulates secondary cell wall formation and lignin biosynthesis. Plant Journal, 43, 553-567. doi:10.1111/j.1365-313X.2005.02480.x

[149]   Stracke, R., Werber, M. and Weisshaar, B. (2001) The R2R3-MYB gene family in Arabidopsis thaliana. Current Opinion in Plant Biology, 4, 447-456. doi:10.1016/S1369-5266(00)00199-0