WJNS  Vol.2 No.1 , February 2012
Immunocytochemical identification and distribution of the cell types in the pituitary gland of Bagrus bayad (Teleostei, Bagridae)
ABSTRACT
Immunocytochemical identification of the different cell types in the pituitary gland of Bagrus bayad was performed using antisera against mammalian (human and rat) and piscine hormones. The adenohypophysis was composed of rostral pars distalis (RPD), proximal pars distalis (PPD) and pars intermedia (PI). Prolactin and adrenocorticotrophic cells were located in the rostral pars distalis of the pituitary. Gonadotrophic and growth hormone cells were distributed in the proximal pars distalis, but gonadotrophic cells appear also at the border of the pars intermedia. Somatolactin cells, as well as alpha-melanotrophic cells were located in the pars intermedia of B. bayad pitui-tary. The prolactin (PRL) cells were distributed in the RPD stained with orange G and showed strong immunoreactivity with antiserum to chum salmon. The adrenocorticotrophic (ACTH) cells were lead hema-toxylin-positive (PbH+) and showed strong im- mu-noreactivity with anti-human ACTH; these cells bor-dered the neurohypophysis and grouped in islets be-tween PRL cells in the RPD. Growth hormone (GH) cells were densely distributed with the gonadotrophic (GTH) cells in the PPD. They were orange G positive and reacted with antiserum to chum salmon. GTH cells were located in the central area of the PPD and in the external border of the PI. These cells were Alcyan Blue and PAS positive, and immunostained with anti-chum salmon GTH Iβ and anti-chum salmon GTH IIβ. In addition, antiserum to rat thyrotropin stimulating hormone β (TSHβ) reacted positively to the GTH cells. These results suggest that GTH I, GTH II and TSH are synthesized in the same cells in the pituitary of B. bayad. The PI was composed mainly of PbH+ cells and a PAS+ cell adjacent to the neurohypophysis. The PAS+ cells from the PI bound specifically to anti-chum somatolactin. Anti-alpha- melanin stimulating hormone (MSH) stained only the PbH+ (alpha-melanotrophic) cells of the PI.

Cite this paper
Mousa, M. , Khalil, N. and Amal M. Hashem, A. (2012) Immunocytochemical identification and distribution of the cell types in the pituitary gland of Bagrus bayad (Teleostei, Bagridae). World Journal of Neuroscience, 2, 23-31. doi: 10.4236/wjns.2012.21004.
References
[1]   Holmes, R.L. and Ball, J.N., Eds. (1974) The pituitary gland: A comparative account. Cambridge University Press, London, 170-220.

[2]   Ferrandino, I., Pica, A. and Consiglio G.M. (2000) Immunohistochemical detection of ACTH and MSH cells in the hypophysis of the hermaphroditic teleost, Diplodus sargus. European Journal of Histochemistry, 44, 397-406.

[3]   Borella, M.I., Venturieri, R. and Mancera, J.M. (2009) Immunocytochemical identification of adenohypophyseal cells in the pirarucu (Arapaima gigas), an Amazonian basal teleost. Fish Physiology and Biochemistry, 35, 3-16. doi:10.1007/s10695-008-9254-x

[4]   Ohkubo, M., Katayama, S. and Shimizu, A. (2010) Molecular cloning and localization of the luteinizing hormone β subunit and glycoprotein hormone α subunit from Japanese anchovy Engraulis japonicus. Journal of Fish Biology, 77, 372-387. doi:10.1111/j.1095-8649.2010.02683.x

[5]   García-Hernández, M.P., García-Ayala, A., Zandbergen, M.A. and Agulleiro, B. (2002) Investigation into the duality of gonadotropic cells of Mediterranean yellowtail (Seriola dumerilii, Risso 1810): Im-munocytochemical and ultrastructural studies. General Com-parative Endocrinology, 128, 25-35. doi:10.1016/S0016-6480(02)00052-7

[6]   Mousa, M.A. (2002) Immunocytochemical and histoche- mical study on oogenesis in thin-lipped grey mullet, Liza ramada. Journal of the Egyptian German Society of Zoology, 39, 549-567.

[7]   García-Ayala, A., Villaplana, M., García-Hernández, M.P., Chaves Pozo, E. and Agulleiro, B. (2003) FSH-, LH-, and TSH-expressing cells during development of Sparus aurata L. (Teleostei). An immunocytochemical study. General Comparative Endocrinology, 134, 72-79. doi:10.1016/S0016-6480(03)00198-9

[8]   Mousa, M.A., Kha-lil, N.A. and Gaber, S.A. (2006) Distribution of immunoreac-tivities for adeno-hypophysial hormones in the pituitary gland of the Nile mormyrid, Mormyrus kannume (Teleostei, Mormy-ridae). Journal of the Egyptian German Society of Zoology, 51, 33-56.

[9]   Shimizu, A., Hamaguchi, M., Ito, H., Ohkubo, M., Udagawa, M., Fujii, K., Kobayashi, T. and Nakamura, M. (2008) Appearances and chronological changes of mummichog Fun-dulus heteroclitus FSH cells and LH cells during ontogeny, sexual differentiation, and gonadal development. General Comparative Endocrinology, 156, 312-322. doi:10.1016/j.ygcen.2008.01.022

[10]   Batten, T.F.C. and In-gleton, P.M. (1987) The hypothalamus and pituitary gland. The structure and function of the hypothalamus and pituitary gland. In: Chester-Jones, I., Ingleton, P.M. and Phillips, J.G., Eds., Fundamentals of Comparative Vertebrate Endocrinology, Ple-num Press, New York, 283-409.

[11]   Abdel-Latif, A.F. (1974) Fisheries of Lake Nasser. Aswan Regional Planning, Lake Nasser Development Centre, Aswan, 235.

[12]   Hashem, M.T. (1981) The breeding biology of Bagrus bayad. Bulletin Institute Oceanography and Fisheries, 7, 416-428.

[13]   Tsadu, S.M., Lamai, S.L. and Oladimeji, A.A. (2003) Sexual maturity, fecundity and egg size of wild and cultured samples of Bagrus bayad macropterus. 16th Annual Conference of the Fisheries Society of Nigeria (FISON), Maiduguri, 4-9 November 2001.

[14]   Conn, H.J. (1953) Biological stains. Williams and Wilkins Company, Baltimore.

[15]   McConial, M.A. (1947) Staining of the central nervous system with lead hematoxylin. Journal of Anatomy, 81, 371-372.

[16]   Pearse, A.G.E. (1949) The cytochemical demonstration of gonadotropic hormone in the human anterior hypophysis. Journal of Pathology and Bac-teriology, 61, 195. doi:10.1002/path.1700610206

[17]   Heath, E.H. (1965) Appli-cation of the performic acid- alcian blue periodic ac-id-Schiff-orange G stain to sections of pituitary glands from domestic mammals. American Journal of Veterinary Research, 26 (III), 36.

[18]   Mousa, M.A. and Mousa, S.A. (1999) Im-munocytochemical study on the localization and distribution of the somatolactin cells in the pituitary gland and the brain of Oreochromis niloticus (Teleostei, Cichlidae). General Com-parative Endocrinology, 113, 197-211. doi:10.1006/gcen.1998.7200

[19]   García-Hernández, M.P., García-Ayala, A., Elbal, M.T. and Agulleiro, B. (1996) The adenohypophysis of Mediterranean yellowtail, Seriola dumerilii (Risso, 1810): An immunocytochemical study. Tissue Cell, 18, 577-585.

[20]   Mousa, M.A. (1998) Immunocytochemical and histo- chemical studies on the reproductive endocrine glands of the Nile tilapia, Oreochromis niloticus (Teleostei, Cichlidae). Journal of the Egyptian German Society of Zoology, 27 (C), 109-134.

[21]   Segura-Noguera, M.M., Laíz-Carrión, R., Martín del Río, M.P. and Mancera, J.M. (2000) An immu-nocytochemical study of the pituitary gland of the white sea-bream (Diplodus sargus). Histochemical Journal, 32, 733-742. doi:10.1023/A:1004101127461

[22]   Mousa, M.A. and Khalil, N.A. (2004) Immunocyto- chemical study of cell type distribu-tion in the pituitary gland of the common sole, Solea solea (Linnaeus, 1758). Journal of Union of Arab Biologists Cairo, 22 (A) Zoology, 51-74.

[23]   Kawauchi, H. and Yasuda, A. (1989) Evolutionary aspects of growth hormones from non-mammalian species. In: Muller, E.E., Cocchi, D. and Locatelli, V., Eds., Advances in Growth Hormone and Growth Factor Research. Springer-Verlag, Berlin and Heidelberg, 51-68.

[24]   Pandolfi, M., Paz, D.A., Maggese, C., Meijide, F.J. and Vissio, P.G. (2001) Immunocytochemical localization of different cell types in the adenohypophysis of the cichlid fish Cichlasoma dimerus (Heckel, 1840). Biocell, 25, 35-42.

[25]   Rodriguez-Gomez, F.J., Rendon-Unceta, M.C., Pinuela, C., Munoz-Cueto, J.A., Jimenez-Tenorio, N. and Sarasquete, C. (2001) Immunocytohistochemical characterization of pituitary cells of the bluefin tuna. Thunnus thynnus L. Histology and Histopathology, 16, 443-451.

[26]   Mancera, J.M., Fernandez-Liebrez, P., Grondona, J.M. and Perez-Figares, J.M. (1993) Influence of the environmental salinity on prolactin and corticotropic cells in the euryhaline gilthead sea bream (Sparus aurata L.). General Comparative Endocrinology, 90, 220-231. doi:10.1006/gcen.1993.1077

[27]   Auperin, B., Leguen, I., Rentier-Delrue, F., Smal, J. and Prunet, P. (1995) Absence of a tiGH effect on adaptability to brackish water in tilapia (Oreochromis niloticus). General Comparative Endocrinology, 97, 145-159. doi:10.1006/gcen.1995.1014

[28]   Mousa, M.A., El-Shebly, A.A. and Khalil, M.B.A. (1999) Effect of salinity on prolactin and growth hormone cell activity in Mugil cephalus. Egyptian Journal of Aquatic Biology and Fisheries, 3, 85-101.

[29]   Kawauchi, H., Moriyama, S., Yasuda, A., Ya-maguchi, K., Shirahata, K., Kato, J. and Hirano, T. (1986) Iso-lation and characterization of chum salmon growth hormone. Archive of Biochemistry and Biophysics, 244, 542-552. doi:10.1016/0003-9861(86)90622-3

[30]   Mancera, J.M., Fer-nandez-Liebrez, P. and Perez-Figares, J.M. (1995) Effect of decreased environmental salinity on growth hormone cells in the gilthead sea bream (Sparus aurata L.). Journal of Fish Biology, 46, 494-500. doi:10.1111/j.1095-8649.1995.tb05990.x

[31]   Parhar, Y.S., Nagahama, Y., Grau, E.G. and Ross, R.M. (1998) Immunocy-tochemical and ultrastructural identification of pituitary cell types in the protogynous Thalassoma duperrey during adult sexual ontogeny. Zoological Science, 15, 263-276. doi:10.2108/zsj.15.263

[32]   Mclean, E. and Donaldson, E.M. (1993) The role of growth hormone in growth of poikilotherms. In: Schreibman, M.P., Scanes, C.G. and Pang, P.K.T. Eds., The Endocrinology of Growth, Development and Metabolism in Vertebrates. Academic Press, New York, 43-71.

[33]   Bj?rnsson, B.Th. (1997) The biology of salmon growth hormone: From daylight to dominance. Fish Physiology and Biochemistry, 17, 9-24. doi:10.1023/A:1007712413908

[34]   Sakamoto, T., McCormick, S.D. and Hirano, T. (1993) Osmoregulatory actions of growth hormone and its mode of action in salmonids: A review. Fish Physiology and Biochemistry, 11, 155-164. doi:10.1007/BF00004562

[35]   Mancera, J.M. and Mccormick, S.D. (1998) Osmoregulatory actions of the GH/IGF axis in non-salmonids teleosts. Comparative Biochemistry and Physi-ology B, 121, 43-48. doi:10.1016/S0305-0491(98)10112-8

[36]   Rand Weaver, M. and Kawauchi, H. (1993) Growth hor- mone, prolactin and somatolactin: A structural overview. In: Hochachka, P.W. and Mommsen, T.P. Eds., Biochemistry and Molecular Biology of Fishes, Elsevier, Amsterdam, 2, 39-56.

[37]   Kaneko, T. (1996) Cell biology of somatolactin. International Review of Cytology, 169, 1-14. doi:10.1016/S0074-7696(08)61983-X

[38]   Rand Weaver, M., Baker, J.B. and Kawauchi, H. (1991) Cellular localization of somatolactin in the pars intermedia of some teleost fishes. Cell Tissue Research, 263, 207 215. doi:10.1007/BF00318762

[39]   Kaneko, T., Kakizawa, S., Yada, T. and Hirano, T. (1993) Gene expression and intra cellular localization of somatolactin in the pituitary of rainbow trout. Cell Tissue Research, 272, 11-16. doi:10.1007/BF00323565

[40]   Mousa, M.A. and Mousa, S.A. (2000) Implication of somatolactin in the regulation of sexual maturation and spawning of Mugil cephalus. Journal of Expe-rimental Zoology, 287, 62-73. doi:10.1002/1097-010X(20000615)287:1<62::AID-JEZ8>3.0.CO;2-0

[41]   Khalil, N.A., El-Gamal, A.S., Gaber, S.A. and Mousa, M.A. (2007) Immunohistochemical localization of gonadotropin-releasing hormone and somatolactin during sexual maturation and spawning of Lates niloticus. Journal of Biological Science, 7, 1102-1111. doi:10.3923/jbs.2007.1102.1111

[42]   Olivereau, M. and Rand Weaver, M. (1994) Immunocytochemical study of the somatolactin cells in the pituitary of pacific salmon, Oncor-hynchus nerka, and O.keta at some stages of the reproductive cycle. General Comparative Endocrinology, 93, 28 35. doi:10.1006/gcen.1994.1004

[43]   Follenius, E. and Dubois, M.P. (1980) Localization of anti-ACTH, anti-MSH and an-ti-alpha-endorphin reactive sites in the fish pituitary. In: Jutisz, M. and McKerns, K.W. Eds., Synthesis and Release of Adeno-hypophyseal Hormones, Plenum, New York, 197-208.

[44]   Dores, R.M. (1990) The proopiomelanocortin family. In: Epple, A., Scanes, C.G. and Stetson, M.H. Eds., Progress in Comparative Endocrinology, Wiley-Liss, New York, 22-27.

[45]   Iturriza, F.C. and Estivariz, F.E. (1986) Lack of glycol- silation of proopiomelanocortin might account for periodic acid-Schiff-negative reaction in ACTH cells of teleost fishes. General Comparative Endocrinology, 61, 229-236. doi:10.1016/0016-6480(86)90200-5

[46]   Rendón, C., Rodríguez-Gómez, F.J., Mu?oz-Cueto, J.A., Pi?uela, C. and Sarasquete, C. (1997) An immunocytochemical study of pitui-tary cells of the Senegalese sole, Solea senegalensis (Kaup, 1858). Histochemical Journal, 29, 813-822. doi:10.1023/A:1026481521916

[47]   Henderson, I.W. and Garland, H.O. (1980) The interrenal gland in pisces: Part 1 Physiology. In: Chester-Jones, I. and Henderson, I.W. Eds., A General, Comparative and Clinical Endocrinology of the Adrenal Cortex, 3, Academic Press, New York, 473-523.

[48]   Baker, B.I. Wilson, J.F. and Bowley, T.J. (1984) Changes in pituitary and plasma levels of MSH in teleosts dur-ing physiological colour change. General Comparative Endo-crinology, 55, 142-149. doi:10.1016/0016-6480(84)90138-2

[49]   Zhu, Y. and Thomas, P. (1996) Elevations of somatolactin in plasma and pituitaries and increased alpha-MSH cell activity in red drum exposed to black background and decreased illumination. General Com-parative Endocrinology, 101, 21-31. doi:10.1016/S0016-6480(96)90191-4

[50]   Pierce, J.G. and Parsons, T.F. (1981) Glycoprotein hormones: Structure and function. Annual Review of Biochemistry, 50, 465-495. doi:10.1146/annurev.bi.50.070181.002341

[51]   Nozaki, M., Naito, N., Swanson, P., Mijata, K., Nakai, Y., Oota, Y., Suzuki, K. and Kawauchi, H. (1990) Salmonid pituitary gonadotrophs I. Distinct cellular distributions of two gonadotropins, GTH I. and GTH II., General Comparative Endocrinology, 77, 348-357. doi:10.1016/0016-6480(90)90224-A

[52]   Yan, Y.H. and Thomas, P. (1991) Histochemical and immunocytochemical identification of the pituitary cell types in three Sciaenid fishes: Atlantic croaker (Micropogonias undulatus), spotted seatrout (Cynoscion nebulosus) and red drum (Sciaenops ocellatus). General Comparative Endocrinology, 84, 389 400. doi:10.1016/0016-6480(91)90086-L

[53]   Wallace, R.A. and Selman, K. (1981) Cellular and dyna- mic aspects of oocyte growth in teleosts. American Zoologist, 21, 325-343.

[54]   Goetz, F.W. (1983) Hormone control of oocyte final maturation and ovulation in fishes. In: Hoar, W.S., Randall, D.J. and Donaldson, E.M. Eds., Fish Physiology, Academic Press, New York, 9, 117-170.

[55]   Nagahama, Y. (1987) Go-nadotropin action on gametogenesis and steroidogenesis in te-leost gonads. Zoological Science, 4, 209-222.

[56]   Tyler, C., Sumpter, J. and Bromage, N. (1987) The hormonal control of vitellogenic uptake into cultured ovarian follicles of the rainbow trout. In: Idler, D.R., Crim, L.W. and Walsh, J.M., Eds., Proceedings of the Third International Symposium on Repro-ductive Physiology of Fish, St. John’s, 2-7 August 1987, 220.

[57]   Mommsen, T.P. and Walsh, P.J. (1988) Vitellogene-sis and oocyte assembly. In: Hoar, W.S. and Randall D.J. Eds., Fish Physiology, 11A, Academic Press, Inc., New York, 347-406.

[58]   Shimizu, A., Hamaguchi, M., Ito, H., Ohkubo, M., Udagawa, M., Fujii, K., Kobayashi, T. and Nakamura, M. (2008) Appearances and chronological changes of mummichog Fundulus heteroclitus FSH cells and LH cells during ontogeny, sexual differentiation, and gonadal development. General Comparative Endocrinology, 156, 312-322. doi:10.1016/j.ygcen.2008.01.022

[59]   Kobayashi, Y., Alam, M.A., Horiguchi, R., Shimizu, A. and Nakamura, M. (2010) Sexually dimorphic expression of gonadotropin subunits in the pituitary of protogynous honeycomb grouper (Epinephelus merra): Evidence that follicle-stimulating hormone (FSH) in-duces gonadal sex change. Biology of Reproduction, 82, 1030-1036. doi:10.1095/biolreprod.109.080986

 
 
Top