JMP  Vol.3 No.2 , February 2012
Five Dimensional Bianchi Type-I String Cosmological Models in Lyra Manifold
ABSTRACT
In this paper we have constructed five dimensional Bianchi type-I cosmological model generated by a cloud of string with particles attached to them in Lyra manifold. Out of the two different cases, we obtained one case leads to the five dimensional vacuum universe in Lyra manifold while the other case yields a string cosmological model in Lyra manifold. Some physical and geometrical properties of the models are briefly discussed.

Cite this paper
G. Samanta and S. Debata, "Five Dimensional Bianchi Type-I String Cosmological Models in Lyra Manifold," Journal of Modern Physics, Vol. 3 No. 2, 2012, pp. 180-183. doi: 10.4236/jmp.2012.32024.
References
[1]   G. Lyra, “über eine Modifikation der Riemannschen Geo- metrie,” Mathematische Zeitschrift, Vol. 54, No. 1, 1951, pp. 52-64. doi:10.1007/BF01175135

[2]   H. Weyl, “Sber Preuss,” Academy Wiss, Berlin, 1918, pp. 465.

[3]   D. K. Sen, “A Static Cosmological Model,” Zeitschrift für Physik A Hadrons and Nuclei, Vol. 149, No. 3, 1957, pp. 311-323.

[4]   D. K. Sen and K. A. Dunn, “A Scalar-Tensor Theory of Gravitation in a Modified Riemannian Manifold,” Jour- nal of Mathematical Physics, Vol. 12, 1971, pp. 578-586. doi:10.1063/1.1665623

[5]   W. B. Halford, “Scalar-Tensor Theory of Gravitation in a Lyra Manifold,” Journal of Mathematical Physics, Vol. 13, No. 11, 1972, pp. 1699-1704. doi:10.1063/1.1665894

[6]   K. S. Bhamra, “A Cosmological Model of Class One in Lyra’s Manifold,” Australian Journal of Physics, Vol. 27, No. 4, 1974, pp. 541-547.

[7]   A. Beesham, “Vacuum Friedmann Cosmology Based on Lyra's Manifold,” Astrophysics and Space Science, Vol. 127, No. 1, 1986, pp. 189-191. doi:10.1007/BF00637776

[8]   H. H. Solenj, “Cosmologies Based on Lyra’s Geometry,” General Relativity and Gravitation, Vol. 19, No. 12, 1988, pp. 1213-1216. doi:10.1007/BF00759100

[9]   A. Pradhan, H. Amirhashchi and H. Zainuddin, “A New Class of Inhomogeneous Cosmological Models with Ele- ctromagnetic Field in Normal Gauge for Lyra’s Mani- fold,” International Journal of Theoretical Physics, Vol. 50, No. 1, 2011, pp. 56-69. doi:10.1007/s10773-010-0493-0

[10]   S. Agarwal, R. K. Pandey and A. Pradhan, “LRS Bianchi Type II Perfect Fluid Cosmological Models in Normal Gauge for Lyra’s Manifold,” International Journal of The- oretical Physics, Vol. 50, No. 1, 2011, pp. 296-307. doi:10.1007/s10773-010-0523-y

[11]   T. Singh and G. P. Singh, “Bianchi Type-I Cosmological Models in Lyra’s Geometry,” Journal of Mathematical Physics, Vol. 32, No. 9, 1991, pp. 2456-2458. doi:10.1063/1.529495

[12]   T. Singh and G. P. Singh, “Some Cosmological Models with Constant Deceleration Parameter,” IL Nuovo Cimen- to, Vol. 106, No. 6, 1991, pp. 617-622. doi:10.1007/BF02813228

[13]   T. Singh and G. P. Singh, “Bianchi Type-III and Kantowski-Sachs Cosmological Models in Lyra’s Geometry,” International Journal of Theoretical Physics, Vol. 31, 1992, pp. 1433-1446. doi:10.1007/BF00673976

[14]   G. P. Singh and K. Desikan, “A New Class of Cosmological Models in Lyra Geometry,” Pramana Journal of Physics, Vol. 49, No. 2, 1997, pp. 205-212. doi:10.1007/BF02845856

[15]   A. D. Linde, “Phase Transitions in Gauge Theories and Cosmology,” Reports on Progesss in Physics, Vol. 42, No. 3, 1979, p. 389. doi:10.1088/0034-4885/42/3/001

[16]   T. W. B. Kibble, “Some Implications of a Cosmological Phase Transition,” Physics Reports, Vol. 67, No. 1, 1980, pp. 183-199. doi:10.1016/0370-1573(80)90091-5

[17]   Y. B. Zel’dovich, Monthly Notices of the Royal astro- nomical Society, Vol. 192, 1980, p. 663.

[18]   A. Vilenkin, “Cosmological Density Fluctuations Produced by Vacuum Strings,” Physical Review Letters, Vol. 46, 1981, pp. 1169-1172. doi:10.1103/PhysRevLett.46.1169

[19]   A. Vilenkin, “Gravitational Beld of Vacuum Domain Walls and Strings,” Physical Review D, Vol. 28, No. 4, 1981, p. 852. doi:10.1103/PhysRevD.23.852

[20]   T. W. B. Kibble, “Topology of Cosmic Domains and Strings,” Journal of Physics A, Vol. 9, No. 8, 1976, p. 1387. doi:10.1088/0305-4470/9/8/029

[21]   S. Chatterjee, B. Bhui and A. Banerjee, “Higher Dimensional Cosmological Model with Homogeneous Perfect Fluid,” Physics Letters A, Vol. 149, No. 2-3, 1990, pp. 91-94. doi:10.1016/0375-9601(90)90531-R

[22]   T. Appelquist, A. Chodos and P. G. O. Freund, “Modern Kaluza Klein Theories,” Addison Wesley, Boston, 1987.

[23]   A. Chodos and S. Detweller, “Where Has the Fifth Dimension Gone?” Physical Review D, Vol. 21, No. 8, 1980, p. 2167. doi:10.1103/PhysRevD.21.2167

[24]   K. D. Krori, T. Chaudhuri and C. R. Mahanta, “Strings in Some Bianchi Type Cosmologies,” General Relativity and Gravitation, Vol. 26, No. 3, 1994, pp. 265-274. doi:10.1007/BF02108006

[25]   R. Venkateswarlu and K. Pavankumar, “Higher Dimensional String Cosmologies in Scale-Covariant Theory of Gravitation,” Astrophysics and Space Science, Vol. 298, No. 3, 2005, pp. 403-408. doi:10.1007/s10509-005-5830-z

[26]   F. Rahaman, S. Chakraborty, S. Das, M. Hossain and J. Bera, “Higher-Dimensional String Theory in Lyra Geome- try,” Pramana Journal of Physics, Vol. 60, No. 3, 2003, pp. 453-459. doi:10.1007/BF02706151

[27]   G. Mohanty and G. C. Samanta, “Five Dimensional Axially Symmetric String Cosmological Models with Bulk Viscous Fluid,” International Journal of Theoretical Phy- sics, Vol. 48, No. 8, 2009, pp. 2311-2318. doi:10.1007/s10773-009-0020-3

[28]   G. S. Khadekar and R. Shelote, “Higher Dimensional Cos- mological Model with Quark and Strange Quark Mat- ter,” International Journal of Theoretical Physics, 2011. http://www.springerlink.com/content/468p520323284k2w/

 
 
Top