[1] C. Klein, “Some Precambrian Banded Iron-Formations (Bifs) from around the World: Their Age, Geologic Setting, Mineral-ogy, Metamorphism, Geochemistry, and Ori- gin,” American Mineralogist, Vol. 90, No. 10, 2005, pp. 1473-1499. doi:10.2138/am.2005.1871
[2] A. F. Trendall, “The Signifi-cance of Iron-Formation in the Precambrian Stratigraphic Re-cord,” In: W. Altermann and P. L. Corcoran, Eds., Precambrian Sedimentary Environments: A Modern Approach to Ancient Depositional Systems, International Association of Sedimentolo-gists Spe- cial Publication, John Wiley & Sons, Inc., New York, 2002, pp. 33-66.
[3] M. Gole and C. Klein, “Banded Iron-Formations through Much of Precambrian Time,” Journal of Geology, Vol. 89, No. 2, 1981, pp. 169-183. doi:10.1086/628578
[4] A. D. Webb, et al., “From Banded Iron-Formation to Iron Ore: Geochemical and Mineralogical Constraints from across the Hamersley Province, Western Aus-tralia,” Che- mical Geology, Vol. 197, No. 1-4, 2003, pp. 215-251. doi:10.1016/S0009-2541(02)00352-2
[5] A. L. Pickard, “SHRIMP U-Pb Zircon Ages of Tufface- ous mudrocks in the Brockman Iron Formation of Hamersley Range, Western Aus-tralia,” Australian Journal of Earth Sciences, Vol. 49, No. 3, 2002, pp. 491-507. doi:10.1046/j.1440-0952.2002.00933.x
[6] R. C. Morris, “Genetic Modelling for Banded Iron-Formation of the Hamer-sley Group, Pilbara Craton, Western Australia,” Precambrian Research, Vol. 60, 1993, pp. 243- 286. doi:10.1016/0301-9268(93)90051-3
[7] A. F. Trendall and J. G. Blockley, “The Iron-Formations of the Precambrian Hamer-sley Group, Western Australia, with Special Reference to the Associated Crocidolite,” Western Australia Geological Survey Bulletin, Vol. 119, 1970, pp. 1-365.
[8] N. J. Beukes, “Pa-leoenvironmental Setting of Iron-For- mations In The Deposi-tional Basin of the Transvaal Supergroup, South Africa,” In: A. F. Trendall and R. C. Morris, Eds., Iron-Formations: Facts and Problems. Development in Precambrian Geology, Vol. 6, 1983, pp. 131- 209. doi:10.1016/S0166-2635(08)70043-4
[9] C. Klein, et al., “Filamentous Microfossils in the Early Proterozoic Transvaal Supergroup: Their Morphology, Sig- nificance, and Paleoenvironmental Setting,” Precambrian Research, Vol. 36, No. 1, 1987, pp. 81-94. doi:10.1016/0301-9268(87)90018-0
[10] J. W. Schopf, “Fossil Evidence of Archaean Life,” Philosophical Transactions of the Royal Society, Vol. 361, No. 1470, 2006, pp. 869-885. doi:10.1098/rstb.2006.1834
[11] H. D. Holland, “The Oceans: A Possible Source of Iron In Iron-Formations,” Economic Ge-ology, Vol. 68, No. 7, pp. 1169-1172. doi:10.2113/gsecongeo.68.7.1169
[12] A. G. Cairns-Smith, “Precambrian Solution Photochemistry, Inverse Segregation, and Banded Iron-Formations,” Nature, Vol. 276, No. 5690, 1978, pp. 807-808. doi:10.1038/276807a0
[13] A. Kappler, et al., “Deposition of Banded Iron Formations by Anoxygenic Phototrophic Fe(II)-Oxidizing Bacteria,” Geology, Vol. 33, No. 11, 2005, pp. 865-868. doi:10.1130/G21658.1
[14] K. O. Konhauser, et al., “Decoup-ling Photochemical Fe(II) Oxidation from Shallow-Water BIF Deposition,” Earth and Planetary Science Letters, Vol. 258, No. 1-2, 2007, pp. 87-100. doi:10.1016/j.epsl.2007.03.026
[15] F. Widdel, et al., “Ferrous Iron Oxidation by Anoxygenic Photo-trophic Bacteria,” Nature, Vol. 362, No. 6423, 1993, pp. 834-836. doi:10.1038/362834a0
[16] P. E., Jr. Cloud, “Sig-nificance of the Gunflint (Precambrian) Microflora,” Science, Vol. 148, No. 3666, 1965, pp. 27-35.
[17] P. E., Jr. Cloud, “Paleobiological Significance of Iron- formations,” Economic Geology, Vol. 68, 1973, pp. 1135- 1143. doi:10.2113/gsecongeo.68.7.1135
[18] K. O. Konhauser, et al., “Could Bacteria Have Formed the Precambrian Banded Iron Formations?” Geology, Vol. 30, No. 12, 2002, pp. 1079-1082. doi:10.1130/0091-7613(2002)030<1079:CBHFTP>2.0.CO;2
[19] C. J. Bjerrum and D. E. Canfield, “Ocean Productivity about 1.9 Gyr Ago Limited by Phosphorus Adsorption Onto Iron Oxides,” Nature, Vol. 417, No. 6885, 2002, pp. 159-162. doi:10.1038/417159a
[20] B. M. Simonson, “Sedimentological Constraints on the Origin of Precambrian Iron-Formations,” Geological Society of America Bulletin, Vol. 96, 1985, pp. 244-252. doi:10.1130/0016-7606(1985)96<244:SCOTOO>2.0.CO;2
[21] B. Krape?, et al., “Hydrothermal and Resedimented Origins of the Precursor Sediments to Banded Iron Formation: Sedi-mentological Evidence from the Early Palaeoproterozoic Brockman Supersequence of Western Australia,” Sedimentol-ogy, Vol. 50, No. 5, 2003, pp. 979-1011. doi:10.1046/j.1365-3091.2003.00594.x
[22] A. L. Pickard, et al., “Deep-Marine Depositional Setting of Banded Iron Forma-tion: Sedimentological Evidence From Interbedded Clastic Sedimentary Rocks in the Early Palaeoproterozoic Dales Gorge Member of Western Australia,” Sedimentary Geology, Vol. 170, No. 1-2, 2004, pp. 37-62. doi:10.1016/j.sedgeo.2004.06.007
[23] H. P. Eugster and I.-M. Chou, “The Depositional Environments of Precambrian Banded Iron-Formations,” Economic Geology, Vol. 68, No. 7, 1973, pp. 1144-1168. doi:10.2113/gsecongeo.68.7.1144
[24] R. Buick and J. S. R. Dunlop, “Evaporitic Sediments of Early Archaean Age from the Warrawoona Group, North Pole, Western Australia,” Sedi-mentology, Vol. 37, No. 2, 1990, pp. 247-277. doi:10.1111/j.1365-3091.1990.tb00958.x
[25] A. Gandin, et al., “Vanished Evaporates and Carbonate Formation in the Neoar-chaean Kogelbeen and Gamohaan Formations of the Camp-bellrand Subgroup, South Africa,” Journal of African Earth Sciences, Vol. 41, No. 1-2, 2005, pp. 1-23. doi:10.1016/j.jafrearsci.2005.01.003
[26] E. A. Gaucher, et al., “Palaeotemperature Trend for Precambrian Life Inferred from Resurrected Proteins,” Nature, Vol. 451, No. 7179, 2008, pp. 704-707. doi:10.1038/nature06510
[27] F. Robert and M. Chaussidon, “A Paleotemperature Curve for the Precambrian Oceans Based on Silicon Isotopes in Cherts,” Nature, Vol. 443, No. 7036, 2006, pp. 969-972. doi:10.1038/nature05239
[28] E. G. Nisbet and N. H. Sleep, “The Habitat and Nature of Early Life,” Na-ture, Vol. 409, No. 6823, 2001, pp. 1083- 1091. doi:10.1038/35059210
[29] D. Y. Sumner and J. P. Grotzinger, “Implications for Neoarchaean Ocean Chemistry from Primary Carbonate Mineralogy of the Campbellrand-Malmani Platform, South Africa,” Sedimentology. Vol. 51, No. 6, 2004, pp. 1273- 1299. doi:10.1111/j.1365-3091.2004.00670.x
[30] H. Dalstra, “Cover Photo,” Geology, Vol. 31, No. 10. 2003, cover photo.
[31] Z. Lewy, “Early Precambrian Banded Iron Forma-tions: Biochemical Precipitates from Highly Evaporated Hydro- thermal Solutions of Polar Region Lakes,” Carbonates and Evaporites, Vol. 24, No. 1, 2009, pp. 1-15.
[32] M. G. Miller and R. K. O’Nions, “Sources of Precambrian Chemical and Clastic Sediments,” Nature, Vol. 314, No. 6009, 1985, pp. 325-330. doi:10.1038/314325a0
[33] A. F. Trendall, “Second Progress Report on the Brock- man Iron Formation in the Wit-tenoom-Yampire Area,” Geo- logical Survey of Western Austra-lia Annual Report 1965, 1966, pp. 75-87.
[34] M. Idnurm and J. W. Giddings, “Australian Precambrian Polar Wander: A Review,” Precambrian Research, Vol. 40-41, 1988, pp. 61-88. doi:10.1016/0301-9268(88)90061-7
[35] M. W. McElhinny and M. O. McWilliams, “Precambrian Geodynamics—A Pa-laeomagnetic View,” Tectonophysics, Vol. 40, No. 1-2, 1977, pp. 137-159. doi:10.1016/0040-1951(77)90032-4
[36] D. T. A. Symons, “Huronian Glaciation and Polar Wander from the Gowganda Formation, Ontario,” Geology, Vol. 3, No. 6, 1975, pp. 303-306. doi:10.1130/0091-7613(1975)3<303:HGAPWF>2.0.CO;2
[37] V. A. Melezhnik, “Huronian Glaciation and Polar Wander from the Gowganda Formation, Ontario,” Geology, Vol. 3, 2006, pp. 130-137.
[38] D. A. Evans, et al., “Low-Latitude Glaciation in the Palaeoproterozoic Era,” Nature, Vol. 386, No. 6622, 1997, pp. 262-266. doi:10.1038/386262a0
[39] D. McB. Martin, “Depositional Setting and Implications of Paleoproterozoicgla-ciomarine Sedimentation in the Hamersley Province, Western Australia,” Geological Sur- vey of America Bulletin, Vol. 111, No. 2, 1999, pp. 189- 203.
[40] T. D. Brock, “Environmentl Microbiology of Living Stromatolites,” In: M. R. Walter, Ed., Stromatolites. Developments in Sedimentology, Vol. 20, 1976, pp. 141-148. doi:10.1038/303163a0
[41] P. S. Braterman, et al., “Photo-Oxidation of Hydrated Fe2++—Significance for Banded Iron Formations,” Nature, Vol. 303, No. 5913, 1983 pp. 163-164.
[42] W. W. Fischer and A. H. Knoll, “An Iron Shut-tle for Deepwater Silica in Late Archean and Early Paleopro-terozoic Iron Formation,” GSA Bulletin, Vol. 121, No. 1-2, 2009, pp. 222-235.
[43] N. J. Beukes, “Facies Relations, De-positional Environments and Diagenesis in a Major Early Pro-terozoic Stromatolitic Carbonate Platform to Basinal Sequence, Cam- pbellrand Subgroup, Transvaal Supergroup, Southern Africa,” Sedimentary Geology, Vol. 54, 1987, pp. 1-46. doi:10.1016/0037-0738(87)90002-9
[44] W. Altermann and H.-G. Herbig, “Tidal Flat Peposits of the Lower Proterozoic Campbell Group along the Southwestern Margin of the Kaap-vaal Craton, Northern Cape Province, South Africa,” Journal of African Earth Sciences, Vol. 13, No. 3-4, 1992, pp. 415-435. doi:10.1016/0899-5362(91)90106-9
[45] W. Altermann, “The Evolution of Life and Its Impact on Sedimentation,” Special Publications of the International Association of Sedimentolo-gists, Vol. 33, 2002, pp.15-32.
[46] M. R. Walter, “Geyserites of Yellowstone National Park: An Example of Abiogenic Stromatolites,” In: M. R. Walter, Ed., Stromatolites. Develop-ments in Sedimentology, Vol. 20, Elsevier, Amsterdam, 1976, pp. 87-112.
[47] J. R. Eggleston and W. E. Dean, “Freshwater Stromatolitic Bioherms in Green Lake, New York,” In: M. R. Walter, Ed., Stromatolites. Developments in Sedimentology, Vol. 20, Elsevier, Amsterdam, 1973, pp. 479-488.
[48] R. C. Surdam and J. L. Wray, “Lacustrine Stromatolites, Eocene Green River Formation, Wyoming,” In: M. R. Walter, Ed., Stromatolites. Developments in Sedimentology, Vol. 20, El-sevier, Amsterdam, 1976, pp. 535-541.
[49] B. M. Simonson and A. D. T. Goode, “First Discovery of Ferruginous Chert Arenites in the Early Precambrian Ha- mersley Group of West-ern Australia,” Geology, Vol. 17, No. 3, 1989, pp. 269-272. doi:10.1130/0091-7613(1989)017<0269:FDOFCA>2.3.CO;2
[50] N. J. Bukes and C. Klein, “Geochemistry and Sedimentol-ogy of a Facies Transition—From Microbanded to Gra- nular Iron-Formation—In the Early Proterozoic Trans- vaal Super-group, South Africa,” Precambrian Research, Vol. 47, No. 1-2, 1990, pp. 99-139.
[51] I. W. H?lbich, et al., “Carbon-ate-Banded Iron Formation Transition in the Early Protero-zoicum of South Africa,” Journal of African Earth Sciences, Vol. 15, No. 2, 1992, pp. 217-236. doi:10.1016/0899-5362(92)90070-S
[52] R. Buick and J. S. R. Dunlop, “Evaporitic Sediments of Early Archaean Age from the Warrawoona Group, North Pole, Western Australia,” Sedi-mentology, Vol. 37, No. 2, 1990, pp. 247-277. doi:10.1111/j.1365-3091.1990.tb00958.x
[53] K. Sugitani, et al., “Stratigraphy and Sedimentary Petrology of an Archean Volcanic-Sedimentary Succession at Mt. Goldsworthy in the Pilbara Block, Western Australia: Implications of Evaporate (Nahcolite) and Barite De- position,” Precambrian Research, Vol. 120, No. 1-2, 2003, pp. 55-79. doi:10.1016/S0301-9268(02)00145-6
[54] A. Gadin, et al., “Vanished Evaporates and Carbonate Formation in the Neoar-chaean Kogelbeen and Gamohaan formations of the Campbell-rand Subgroup, South Africa,” Journal of African Earth Sci-ences, Vol. 41, No. 1-2, 2005, pp. 1-23. doi:10.1016/j.jafrearsci.2005.01.003
[55] N. T. Arndt, “Why Was Flood Volcanism on Submerged Continental Platforms So Common in the Precambrian?” Precambrian Research, Vol. 97, No. 3-4, 1999, p. 155. doi:10.1016/S0301-9268(99)00030-3
[56] M. E. Barley, et al., “Sedimentary Evidence for an Archaean Shallow-Water Vol-canic-Sedimentary Facies, Ea- stern Pilbara Block, Western Australia,” Earth and Pla- netary Science Letters, Vol. 43, No. 1, 1979, pp. 74-84. doi:10.1016/0012-821X(79)90156-0
[57] D. R. Lowe and L. P. Knauth, “Sedimentology of the Onverwacht Group (3.4 Billion Years), Rransvaal, South Africa, and Its Bearing on the Char-acteristics and Evolution of the Early Earth,” Journal of Geol-ogy, Vol. 85, 1977, pp. 699-723. doi:10.1086/628358
[58] J. P. Harnmeijer, “Squeezing Blood from a Stone: Inference into the Life and Depositional Environments,” Ph.D. Thesis, University of Washington, Washington, 2010.
[59] A. Bekker, J. F. Slack, N. Planavsky, B. Krape?, A. Hofmann, K. O. Konhauser and O. J. Rouxel, “Iron Formation: The Sedimentary Product of a Complex Interplay Among Mantle, Tectonic, Oceanic and Biospheric Processes,” Economic Geology, Vol. 105, No. 3, 2010, pp. 467-508. doi:10.2113/gsecongeo.105.3.467
[60] N. J. Planavsky, P. McGoldrick, C. T. Scott, C Li, C. T. Reinhard, A. E. Kelly, X. Chu, A. Bekker, G. D. Love, and T. W. Lyons, “Widespread Iron-Rich Conditions in the Mid-Proterozoic Ocean,” Nature, Vol. 477, No. 7356, 2011, pp. 448-451. doi:10.1038/nature10327