Back
 TI  Vol.1 No.2 , May 2010
Petrochemical Industry: Assessment and Planning Using Multicriteria Decision Aid Methods
Abstract: A methodology to solve a large and complex problem is proposed. OR methods as Multilevel Planning, Network Techniques, Multicriteria Decision Aid (MCDA) and Mixed Integer Linear Programming (MILP) were used to structure the methodology. One of the principal objectives of this work is reduce the complexity of a large problem and solve it to find the better solution for the decision makers. The methodology is applied to a petrochemical industry of Mexico, which is structured in a network, having different alternative routes of production; each of them having also a different technology. This network begins from the crude oil as raw material in order to produce the basic petrochemicals until finals ones. It has been considered that basic petrochemicals will be produced through a set of Refineries with a high production of basic petrochemicals yield, searching the best configuration among it, according with the needs of basic petrochemicals coming from the final’s and its best route selected.
Cite this paper: nullC. Toledo, C. Aranda and B. Mareschal, "Petrochemical Industry: Assessment and Planning Using Multicriteria Decision Aid Methods," Technology and Investment, Vol. 1 No. 2, 2010, pp. 118-134. doi: 10.4236/ti.2010.12015.
References

[1]   R. Armand, “La dècentralisation des décisions par les prix,” Metra, Vol. 7, No. 3, 1968.

[2]   K. J. Arrow and L. Hurwicz, “Decentralization and Computation in Resource Allocation,” Mathematical Methods in the Social Sciences, University of North Car-olina Press, 1960, pp. 34-104.

[3]   J. P. Aubin, “Multigames and Decentralization in Man-agement,” In: Cochrane, J. Ed., Multiple criteria decision making, University of South Carolina, Columbia, 1973.

[4]   J. T. Bell, “Modeling of the Global Petrochemical Indus-try,” Ph. D. Thesis, Department of Chemical Engineering, University of Wisconsin-Madison, Madison, 1990.

[5]   A. Bensoussan, “Decentralization in Management,” Euro-pean Institute for Advance Studies in Management, Bruxelles, 1972.

[6]   J. P. Brans, “The Space of Freedom of the Decision Maker Modeling the Human Brain,” European Journal of Op-erational Research, Vol. 92, No. 3, 1996, pp. 593-602.

[7]   J. P. Brans and P. Vincke, “A Preference Ranking Or-ganization Method: The PROMETHEE Method for MCDM,” Management Science, Vol. 31, No. 6, 1985, pp. 647-656.

[8]   J. P. Brans and B. Mareschal, “PROMCALC & GAIA: A New Decision Support System for Multicriteria Decision Aid,” Decision Support Systems, Vol. 12, No. 4-5, 1994, pp. 297-310.

[9]   J. P. Brans and B. Mareschal, “Promethee-V: MCDM Problems with Segmentation Constraints,” Vol. 30, No. 2, 1992, pp. 85-96.

[10]   J. P. Brans and B. Mareschal, “The PROMETHEE VI Procedure, How to Differentiate Hard from Soft Multic-riteria Problems,” Journal of Decision Systems, Vol. 4, 1995, pp. 213-223.

[11]   J. P. Brans, B. Mareschal and P. Vincke, “PROMETHEE: A new Family of Outranking Methods in MCDM,” In: Brans, J. P. Ed., Operational Research’84 (IFORS’84), Amsterdam, 1984, pp. 477-490.

[12]   J. P. Brans, “L'ingéniérie de la décision. Elaboration d'in-struments d'aide à la decision,” Méthode PROMETHEE. Université Laval, Quebec, Canada, 1982.

[13]   O. E. Chavez, “Structural Simulation in the Analysis of the Chemical Industry,” Ph. D. Thesis, University of Wisconsin-Madison, Madison, 1986.

[14]   G. B. Dantzig and P. Wolfe, “Decomposition Principle for Linear Programs,” Operations Research, 1960, Vol. 8, No. 1, pp. 101-111.

[15]   T. C. Escobar, Modèles de décentralisation, prix de transfert et coordonnabilité dans les systèmes de Raffinage et la Planification du Gaz naturel. Thèse de doctorat en Calcul économique et Analyse de Système, Groupe de Recherche en Analyse de Système et Calcul Economique (ERA-CNRS No 640), Université d’Aix-Marseille, Bel-gium, 1979.

[16]   C. Escobar and F. Rodríguez, Metodología para la Eva- luación de Tecnologías y su Aplicación en el Cálculo del Valor Agregado en Cadenas Petroquímicas. Revista del Instituto Mexicano de Ingenieros Químicos IMIQ, Vol. 4, 1994.

[17]   C. Escobar and R. Trémoliéres, Dècentralisation, Prix de transfert et Contrôle de gestion dans les Raffineries. Aix-en-Provence: IAE (Institut d'Administration des En-treprises), 1978.

[18]   C. Escobar, Descentralización y Coordinación de un Sis-tema Jerárquico de Oferta de Productos Petrolíferos y Petroquímicos. En: Memoria de Simposio: Modelos Mat- emáticos para la Planeación Energética. Universidad Na-cional Autónoma de México y Consejo Nacional de Ciencia y Tecnología, 1983. pp. 85-112.

[19]   D. Ford, “Develop Your Technology Strategy,” Long range planning, Vol. 21, No. 1, 1988, pp 85-95.

[20]   C. Garcia, Documento de examen predoctoral en Ingen- iería (Ingeniería Química). Ciudad Universitaria (UN- AM), México, 2006a.

[21]   C. Garcia, Refinería petroquímica. En: C. Escobar Toledo Ed., Recuperación del Valor Agregado y de la Produc-tividad en la Industria Petroquímica Mexicana. Ciudad Universitaria, México, 2006b, pp. 1-44.

[22]   A. Geoffrion, “MElements of Large-Scale Mathematical Programming,” Management Science, Vol. 16, No. 11, 1970, pp. 652-691.

[23]   W. F. Hamilton, “The Dynamics of Technology and Strategy,” European Journal of Operational Research, Vol. 47, No. 2, 1990, pp. 141-152.

[24]   J. Kornai, “Thoughts on Multilevel Planning Systems,” In: Goreux, L. M. and Manne, A. S. Eds., Multilevel Planning, Cases Studies in Mexico, North-Holland Publishing Company, Amsterdam, 1973, pp. 201-214.

[25]   J. Kornai and T. Liptak, “Two-Level Planning,” Econo-metrica, Vol. 33, 1965, pp. 141-169.

[26]   J. Kornai, “Multilevel Programming—A First Report on the Model and on the Experimental Computation,” Euro-pean Economic Review, Vol. 1, No. 1, 1969, pp. 134-191.

[27]   C. Macharis, J. P. Brans and B. Mareschal, “The GDSS PROMETHEE Procedure (A PROMETHEE-GAIA Based Procedure for Group Decision Support),” Journal of Decision Systems, Vol. 7, 1998, pp. 283-307.

[28]   E. Malinvaud, “Decentralized Procedures for Planning,” In: Malinvaud, E. and Bacharach, M. O. L. Eds., Activity Analysis in the Theory of Growth and Planning, Macmil-lan, London, 1967, pp. 170-208.

[29]   B. Mareschal, “Weight Stability Intervals in Multicriteria Decision Aid,” European Journal of Operational Re-search, Vol. 33, 1988, pp. 54-64.

[30]   B. Mareschal, “Aide à la décision multicritère: dévelop-pements récents des méthodes PROMETHEE,” Cahiers du, C.E.R.O., Vol. 29, 1987, pp. 175-214.

[31]   B. Roy, “Analyse et choix multicritère,” Informatique et Gestion, Vol. 57, 1974, pp. 21-27.

[32]   B. Roy and P. Vincke, “Multicriteria Analysis: Survey and New Directions,” European Journal of Operational Resarch, Invited Review, Vol. 8, No. 3, 1981, pp. 207-218.

[33]   D. F. Rudd and C. C. Watson, “Strategy of Process En-gineering,” Wiley Internacional Edition, New York, 1968.

[34]   D. F. Rudd, S. Fathi-Afshar, A. A. Treviño and M. A. Stadtherr, “Petrochemical Technology Assessment,” Wil- ey-Interscience, New York, 1981.

[35]   E. Sevilla, De los petroquímicos finales a los básicos: Algoritmo de recorrido y métodos multicriterio. En: C. Escobar Toledo (Ed.), Recuperación del Valor Agregado y de la Productividad en la Industria Petroquímica Mexicana. Ciudad Universitaria (UNAM), México, 2006, pp. 1-25.

[36]   D. Vanderpooten and P. Vincke, “Description and Analy-sis of Some Representative Interactive Multicriteria Pro-cedures,” Mathematical and Computer Modelling, Vol. 12, No. 3, 1989, pp. 1121-1238.

[37]   H. M. Wagner, “Principles of Operations Research,” Pren-tice-Hall, Englewood Cliffs, 1970.

[38]   L. Walras, “Elements of Pure Economics,” On the theory of Social Wealth, George Allen, London, 1954.

[39]   R. L. Ackoff, “Creating the Corporate Future,” John Wiley & Sons, Inc., New York, 1981.

[40]   R. L. Ackoff, “Mission Statements,” Planning Review, Vol. 15, No. 4, 1987, pp. 30-31.

 
 
Top