The Distribution of the Value of the Firm and Stochastic Interest Rates

Show more

References

[1] D. Hackbarth, C. A. Hennessy and H. E. Leland, “Can the Trade-Off Theory Explain Debt Structure?” Review of Financial Studies, Vol. 20, No. 1, 2007, pp. 1389-1428.
doi:10.1093/revfin/hhl047

[2] H. E. Leland and K. B. Toft, “Optimal Capital Structure, Endogenous Bankruptcy, and the Term Structure of Credit Spreads,” Journal of Finance, Vol. 51, No. 3, 1996, pp. 987-1019. doi:10.2307/2329229

[3] H. Qi, “Credit Spread by a Modified Leland-Toft Model,” FMA Meetings, Orlando, 18-20 October 2007, unpublished.

[4] A. Saha-Bubna and E. Barrett, “Credit Derivatives Show Surge,” Wall Street Journal, Vol. 255, No. 98, 2007, pp. c1.

[5] D. Duffie, D. Filipovic and W. Schachermayer, “Affine Processes and Applications in Finance,” The Annals of Probability, Vol. 13, No. 3, 2003, pp. 984-1053.
doi:10.1214/aoap/1060202833

[6] D. Duffie and K. J. Singleton, “Credit Risk: Pricing, Measurement, and Management,” Princeton University Press, Princeton, 2003.

[7] D. Lamberton and B. Lapeyre, “Introduction to Stochastic Calculus applied to Finance,” English Edition, Translated by N. Ra-beau and F. Mantion, 2nd Edition, Chapman & Hall, London, 2007.

[8] L. Arnold, “Stochastic Differential Equations: Theory and Applications,” John Wiley & Sons, New York, 1974.

[9] V. V. Acharya and J. N. Carpenter, “Corporate Bond Valuation and Hedging with Stochastic Interest Rate and Endogenous Bankruptcy,” The Review of Financial Studies, Vol. 15, No. 5, 2002, pp. 1355-1383.
doi:10.1093/rfs/15.5.1355

[10] R. C. Merton, “On the Pricing of Corporate Debt: The Risk Structure of Interest Rates,” Journal of Finance, Vol. 29, No. 3, 1974, pp. 449-470. doi:10.2307/2978814

[11] F. A. Longstaff and E. S. Schwartz, “A Simple Approach to Valuing Risky Fixed and Floating Rate Debt,” Journal of Finance, Vol. 50, No. 3, 1995, pp. 789-819.
doi:10.2307/2329288

[12] A. J. G. Cairns, “Interest Rate Models: An Introduction,” Princeton University Press, Prince-ton, 2004.

[13] N. Privault, “An Elementary Introduction to Stochastic Interest Rate Modeling,” World Scientific, Singapore, 2008.

[14] R. C. Merton, “Theory of Rational Option Pricing,” Bell Journal of Economics and Management Science, Vol. 4, No. 1, 1973, pp. 141-183. doi:10.2307/3003143

[15] O. Vasicek, “An Equilibrium Characterization of the Term Structure,” Journal of Financial Economics, Vol. 37, 1977, pp. 339-348.

[16] S. Y. Ho and S. B. Lee, “Term Structure Move-ments and Pricing Interest Rate Contingent Claims,” Journal of Finance, Vol. 41, No. 5, 1986, pp. 1011-1029.
doi:10.2307/2328161

[17] J. C. Hull and A. D. White, “Pricing Interest Rate Derivative Securities,” Review of Financial Studies, Vol. 3, No. 4, 1990, pp. 573-592. doi:10.1093/rfs/3.4.573

[18] D. Heath, R. Jarrow and A. Morton, “Bond Pricing and Term Structure of Interest Rates: A New Methodology for Contingent Claims Valuation,” Econometrica, Vol. 60, No. 1, 1992, pp. 77-105. doi:10.2307/2951677

[19] P. E. Kloeden and E. Platen, “Numerical Solution of Stochastic Differential Equations,” Springer-Verlag, New York, 1992.

[20] D. R. Bielecki and M. Rutkowski, “Credit Risk: Modeling, Valuation and Hedging,” Springer, New York, 2002.

[21] R. A. Jarrow, D. Lando and S. M. Turnbull, “A Markov Model for the Term Structure of Credit Risk Spreads,” Review of Financial Studies, Vol. 10, No. 2, 1997, pp. 481-523. doi:10.1093/rfs/10.2.481

[22] S. E. Shreve, “Stochastic Calculus Models for Finance,” Springer, New York, 2004.

[23] J. C. Hull, “Options, Futures and other Derivatives,” 4th Edition, Prentice Hall, Englewood Cliff, 2000.

[24] M. U. Dothan, “On the Term Structure of Interest Rates,” Journal of Financial Economics, Vol. 62, No. 6, 1978, pp. 59-69. doi:10.1016/0304-405X(78)90020-X

[25] I. Karat-zas and S. E. Shreve, “Brownian Motion and Stochastic Calcu-lus,” Springer-Verlag, New York, 1991.
doi:10.1007/978-1-4612-0949-2

[26] J. Cox, J. Ingersoll and S. Ross, “A Theory of the Term Structure of Interest Rates,” Econometrica, Vol. 53, No. 2, 1985, pp. 385-407. doi:10.2307/1911242

[27] N. Pearson and T. S. Sun, “An Em-pirical Examination of the Cox-Ingersoll-Ross Model of Term Structure of Interest Rates Using the Method Maximum Likeli-hood,” Journal of Finance, Vol. 54, 1994, pp. 929-959.

[28] F. Black, E. Derman and W. Toy, “A One-factor Model of Interest Rates and Its Application to Treasury Bond Options,” Financial Analyst’s Journal, Vol. 46, No. 1, 1990, pp. 33-39. doi:10.2469/faj.v46.n1.33

[29] F. Black and P. Karasinski, “Bond and Option Pricing When Short Rates Are Log-Normal,” Financial Analysis Journal, Vol. 47, No. 4, 1991, pp. 52-59.
doi:10.2469/faj.v47.n4.52

[30] T. Mikosch, “Elementary Sto-chastic Calculus with Finance in View,” World Scientific, Singapore, 1999.

[31] T. C. Gard, “Introduction to Stochastic Differential Equations,” Marcel Dekker Inc., New York, 1988.

[32] H. H. Kuo, “Introduction to Stochastic Integration,” Springer, New York, 2006.

[33] N. L. Johnson, S. Kotz and N. Balakrishnan, “Continuous Univariate Distributions,” 2nd Edition, John Wiley & Sons, Inc., New York, 1994.

[34] K. Gie-secke, “Credit Risk Modeling and Valuation: An Introduction,” In: D. Shimko, Ed., Credit Risk: Models and Management, Riskbooks, London, 2004, pp. 1-67.

[35] R. Elliott and P. Kopp, “Mathematics of Financial Markets,” 2nd Edition, Springer-Verlag, New York, 2005

[36] A. N. Shiryaev, “Essentials of Stochastic Finance: Facts, Models, Theory,” World Scientific, New York, 1999.
doi:10.1142/9789812385192

[37] B. Oksendal, “Stochastic Differential Equations: An Introduction with Applications,” 6th Edition, Springer Verlag, New York, 2003.

[38] M. Brennan and E. Schwartz, “A Continuous-Time Approach to the Pricing of Bonds,” Journal of Banking and Finance, Vol. 3, No. 4, 1979, pp. 133-155.
doi:10.1016/0378-4266(79)90011-6

[39] T. Vorst, “Prices and Hedge Ratios of Average Exchange Rate Options,” Interna-tional Review of Financial Analysis, Vol. 1, No. 3, 1992, pp. 179-193.
doi:10.1016/1057-5219(92)90003-M

[40] M. Yor, “On Some Exponential Functionals of Brownian Motion,” Advances in Applied Probability, Vol. 24, No. 3, 1992, pp. 509-531. doi:10.2307/1427477

[41] H. Geman and M. Yor, “Bessel Processes, Asian Options, and Perpetuities,” Mathematical Finance, Vol. 3, No. 4, 1993, pp. 349-375.
doi:10.1111/j.1467-9965.1993.tb00092.x

[42] D. C. Shimko, N. Tejima and D. Van Deventer, “The Pricing of Risky Debt When Interest Rates Are Stochastic,” Journal of Fixed Income, Vol. 3, No. 2, 1993, pp. 58- 65. doi:10.3905/jfi.1993.408084