A Comparison of VaR Estimation Procedures for Leptokurtic Equity Index Returns

Show more

References

[1] E. Fama, “The Behavior of Stock Prices,” Journal of Bu- siness, Vol. 47, No. 1, 1965, pp. 244-280.

[2] B. B. Mandelbrot, “The Variation of Certain Speculative Prices,” Journal of Busi-ness, Vol. 36, No. 4, 1963, pp. 394- 419. doi:10.1086/294632

[3] R. Blattberg and N. Gonedes, “A Comparison of Stable and Student Distributions as Statistical Models of Stock Prices,” Journal of Business, Vol. 47, 1974, pp. 244-280.
doi:10.1086/295634

[4] C. A. Ball and W. N. Torous, “A Simplified Jump Process for Common Stock Returns,” Journal of Financial and Qu- antitative Analysis, Vol. 18, No. 1, 1983, pp. 53-65.
doi:10.2307/2330804

[5] S. J. Kon, “Models of Stock Returns: A Comparison,” Journal of Finance, Vol. 39, No. 1, 1984, pp. 147-165.
doi:10.2307/2327673

[6] J. B. Gray and D. W. French, “Em-pirical Comparisons of Distributional Models for Stock Index Returns,” Journal of Business Finance and Accounting, Vol. 17, No. 3, 1990, pp. 451-459. doi:10.1111/j.1468-5957.1990.tb01197.x

[7] M. Bhat-tacharyya, A. Chaudhary and G. Yadav, “Conditional VaR Estimation Using Pearson Type IV Distribution,” European Journal of Operational Research, Vol. 191, No. 1, 2008, pp. 386-397.
doi:10.1016/j.ejor.2007.07.021

[8] M. Bhattacharyya, N. Misra and B Kodase, “Max VaR for Non-Normal and Het-eroskedastic Returns,” Quantitative Finance, Vol. 9, No. 8, 2009, pp. 925-935.
doi:10.1080/14697680802595684

[9] M. Bhattacharyya and G. Ritolia, “Conditional VaR using EVT—Towards a Planned Margin Scheme,” International Review of Financial Analysis, Vol. 17, No. 2, 2008, pp. 382-395. doi:10.1016/j.irfa.2006.08.004

[10] R. F. Engle, “Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom inflation,” Econometrica, Vol. 50, No. 4, 1982, pp. 987- 1007. doi:10.2307/1912773

[11] T. Bollerslev, “Generalized Autoregressive Conditional Het-eroskedasticity,” Journal of Econometrics, Vol. 31, No. 3, 1986, pp. 307-327. doi:10.1016/0304-4076(86)90063-1

[12] S. Poon and C. Granger, “Forecasting Volatility in Financial Markets,” Journal of Economic Literature, Vol. 41, No. 2, 2003, pp. 478-539.
doi:10.1257/002205103765762743

[13] J. Heinrich, “A Guide to the Pearson Type IV Distribution,” 2004.
http://www-cdf.fnal.gov/publications/cdf6820_pearson4.pdf.

[14] N. L. Johnson, “Systems of Frequency Curves Generated by Methods of Translation,” Biometrika, Vol. 36, No. 1-2, 1949, pp. 149-176. doi:10.1093/biomet/36.1-2.149

[15] A. L. Tucker, “A Reexamination of Finite and Infinite Variance Distributions As Models of Daily Stock Returns,” Journal of Business & Economic Statistics, Vol. 10, No. 1, 1992, pp. 73-81. doi:10.2307/1391806

[16] J. D. Hamilton, “A Quasi-Bayesian Approach to Estimating Parameters for Mixtures of Normal Distributions,” Journal of Business and Economic Statistics, Vol. 9, No. 1, 1991, pp. 27-39. doi:10.2307/1391937

[17] D. M. Titterington, A. F. M Smitha and U. E. Makov, “Statistical Analysis of Finite Mixture Distributions,” John Wiley & Sons, Chichester, 1992.

[18] J. Hull and A. White, “Value at Risk When Daily Changes in Market Variables Are Not Normally Distributed,” Journal of Derivatives, Vol. 5, No. 3, 1998, pp. 9-19.
doi:10.3905/jod.1998.407998

[19] P. Zangari, “An Improved Methodology for Measuring VaR,” Risk Metrics Monitor, Reuters/JP Morgan, 1996.

[20] G. E. P. Box and D. R. Cox, “An Analysis of Transformations,” Journal of the Royal Statistical Society, Vol. 26, No. 2, 1964, pp. 211-252.

[21] B. F. J. Manly, “Exponential Data Transformations,” The Statistician, Vol. 25, No. 1, 1976, pp. 37-42.
doi:10.2307/2988129

[22] P. Li, “Box Cox Transformations: An Overview,” University of Connecticut, Storrs, 2005.

[23] P. J. Bickel and K. A. Doksum, “An Analysis of Transformations Revisited,” Journal of the American Statistical Association, Vol. 76, 1981, pp. 296-311.
doi:10.2307/2287831

[24] J. A. John and N. R. Draper, “An Alternative Family of Transformations,” Applied Statistics, Vol. 29, No. 2, 1980, pp. 190-197. doi:10.2307/2986305

[25] I.-K. Yeo and R. Johnson, “A New Family of Power Transformations to Improve Normality or Symmetry,” Biome- trika, Vol. 87, No. 4, 2000, pp. 954-959.
doi:10.1093/biomet/87.4.954

[26] W. K. Newey and D. G. Steigerwald, “Asymptotic Bias for Quasi-Maximum-Likelihood Estimators in Conditional Heteroskedasticity Models,” Econometrica, Vol. 65, No. 3, 1997, pp. 587-599. doi:10.2307/2171754

[27] P. G. Perez, “Capturing Fat Tail Risk in Exchange Rate Returns Using SU-Curves: A Comparison with Normal Mixture and Skewed Student Distributions,” Journal of Risk, Vol. 10, No. 2, 2007-2008, pp. 73-100.