ICA  Vol.3 No.1 , February 2012
Robust Region Tracking for Swarms via a Novel Utilization of Sliding Mode Control
ABSTRACT
Control of multi-agent autonomous swarms is studied for targeted flocking exercises. The desired decentralized control takes into account robustness against modeling uncertainties as well as bounded unknown forces. In this analysis, we consider the task of driving multiple agents to a moving “target region”, as inter-agent repulsive forces help spread out the agents within the region. An unconventional form of sliding mode control is implemented to provide the robust attraction towards the region’s center. For robustness a finite “boundary layer” is conceived, which corresponds to the desired target region. The flocking control forces are intentionally softened inside this target region, allowing agents to create a uniformly spaced formation guided by the inter-agent repulsion forces. Examples are given for moving circular and elliptical regions which illustrate the effectiveness of the proposed strategy.

Cite this paper
M. Bacon, N. Olgac and R. Cepeda-Gomez, "Robust Region Tracking for Swarms via a Novel Utilization of Sliding Mode Control," Intelligent Control and Automation, Vol. 3 No. 1, 2012, pp. 98-109. doi: 10.4236/ica.2012.31012.
References
[1]   R. Murray, “Recent Research in Cooperative Control of Multi-Vehicle Systems,” Journal of Dynamic Systems, Measurement and Control, Vol. 129, No. 5, 2007, pp. 571583. doi:10.1115/1.2766721

[2]   K. Warburton and J. Lazarus, “Tendency-Distance Models of Cohesion in Animal Groups,” Journal of Theoretical Biology, Vol. 150, No. 4, 1991, pp. 473-488. doi:10.1016/S0022-5193(05)80441-2

[3]   S. Camazine, J. Deneubourg and N. Franks, “Self Organization in Biological Systems,” Princeton University Press, Princeton, 2001.

[4]   C. Reynolds, “Flocks, Herds and Schools: A Distributed Behavioral Model,” Computer Graphics, Vol. 21, No. 4, 1987, pp. 25-34. doi:10.1145/37402.37406

[5]   V. Gazi and K. Passino, “Stability Analysis of Swarms,” IEEE Transactions on Automatic Control, Vol. 48, No. 4, 2003, pp. 692-697. doi:10.1109/TAC.2003.809765

[6]   V. Gazi and K. Passino, “A Class of Attractions/Repulsion Functions for Stable Swarm Aggregations,” International Journal of Control, Vol. 77, No. 18, 2004, pp. 1567-1579. doi:10.1080/00207170412331330021

[7]   R. Olfati-Saber, “Flocking for Multi-Agent Dynamic Systems: Algorithms and Theory,” IEEE Transactions on Automatic Control, Vol. 51, No. 3, 2006, pp. 401-420. doi:10.1109/TAC.2005.864190

[8]   H. Su, X. Wang and Z. Lin, “Flocking of Multi-Agents with a Virtual Leader,” IEEE Transactions on Automatic Control, Vol. 54, No. 2, 2009, pp. 293-307. doi:10.1109/TAC.2008.2010897

[9]   H. Tanner, A. Jadbabaie and G. Pappas, “Flocking in Fixed and Switching Networks,” IEEE Transactions on Automatic Control, Vol. 52, No. 5, 2007, pp. 869-868. doi:10.1109/TAC.2007.895948

[10]   M. Zavlanos, H. Tanner, A. Jadbabaie and G. Pappas, “Hybrid Control for Connectivity Preserving Flocking,” IEEE Transactions on Automatic Control, Vol. 54, No. 12, 2009, pp. 2869-2875. doi:10.1109/TAC.2009.2033750

[11]   J. Yao, R. Ordonez and V. Gazi, “Swarm Tracking Using Artificial Potentials and Sliding Mode Control,” Journal of Dynamic Systems, Measurement and Control, Vol. 129, No. 5, 2007, pp. 749-754. doi:10.1115/1.2764511

[12]   J. Cortes, S. Martinez, T. Karatas and F. Bullo, “Coverage Control for Mobile Sensing Networks,” IEEE Transactions on Robotics and Automation, Vol. 20, No. 2, 2004, pp. 243-255. doi:10.1109/TRA.2004.824698

[13]   K. Laventall and J. Cortes, “Coverage Control by MultiRobot Networks with Limited-Range Anisotropic Sensory,” International Journal of Control, Vol. 82, No. 6, 2009, pp. 1113-1121. doi:10.1080/00207170802471211

[14]   F. Bullo, J. Cortes and S. Martinez, “Distributed Control of Robotic Networks,” Princeton University Press, Princeton, 2006.

[15]   C. Cheah, S. Hou and J.-J. Slotine, “Region-Based Shape Control for a Swarm of Robots,” Automatica, Vol. 45, No. 10, 2009, pp. 2406-2411. doi:10.1016/j.automatica.2009.06.026

[16]   P. McCullough, M. Bacon, N. Olgac, D. A. Sierra and R. Cepeda-Gomez, “A Lyapunov Treatment of Swarm Coordination under Conflict,” Journal of Vibration and Control, Vol. 17, No. 5, 2011, pp. 641-650. doi:10.1177/1077546309360047

[17]   V. I. Utkin, “Variable Structure Systems with Sliding Modes,” IEEE Transactions on Automatic Control, Vol. AC-22, No. 2, 1977, pp. 212-222. doi:10.1109/TAC.1977.1101446

[18]   J.-J. Slotine, “Sliding Controller Design for Non-Linear Systems,” International Journal of Control, Vol. 40, No. 2, 1984, pp. 421-434. doi:10.1080/00207178408933284

[19]   H. Elmali and N. Olgac, “Sliding Mode Control with Perturbation Estimation (SMCPE): A New Approach,” International Journal of Control, Vol. 56, No. 4, 1992, pp. 923-941. doi:10.1080/00207179208934350

[20]   J. LaSalle, “Some Extensions of Liapunov’s Second Method,” IRE Transactions on Circuit Theory, Vol. 7, No. 4, 1960, pp. 520-527.

 
 
Top