ICA  Vol.3 No.1 , February 2012
Sensors and Regional Gradient Observability of Hyperbolic Systems
ABSTRACT
This paper presents a method to deal with an extension of regional gradient observability developed for parabolic system [1,2] to hyperbolic one. This concerns the reconstruction of the state gradient only on a subregion of the system domain. Then necessary conditions for sensors structure are established in order to obtain regional gradient observability. An approach is developed which allows the reconstruction of the system state gradient on a given subregion. The obtained results are illustrated by numerical examples and simulations.

Cite this paper
S. Benhadid, S. Rekkab and E. Zerrik, "Sensors and Regional Gradient Observability of Hyperbolic Systems," Intelligent Control and Automation, Vol. 3 No. 1, 2012, pp. 78-89. doi: 10.4236/ica.2012.31010.
References
[1]   E. Zerrik, H. Bourray and A. El Jai, “Regional Flux Reconstruction for Parabolic Systems,” International Journal of Systems Science, Vol. 34, No. 12-13, 2003, pp. 641650. doi:10.1080/00207720310001601028

[2]   E. Zerrik and H. Bourray, “Regional Gradient Observability for Parabolic Systems,” International Journal of Applied Mathematics and Computer Science, Vol. 13, 2003, pp. 139-150.

[3]   A. El Jai, M. C. Simon and E. Zerrik, “Regional Observability and Sensor Structures,” International Journal on Sensors and Actuators, Vol. 39, No. 2, 1993, pp. 95102. doi:10.1016/0924-4247(93)80204-T

[4]   E. Zerrik, “Regional Analysis of Distributed Parameter Systems,” Ph.D, Thesis, University Med V, Rabat, 1993.

[5]   J. L. Lions and E. Magenes, “Problème aux Limites non Homogènes et Applications,” Dunod, Paris, 1968.

[6]   J. L. Lions, “Contr?labilité Exacte. Perturbation et Stabilisation des Systèmes Distribués,” Dunod, Paris, 1988.

[7]   A. El Jai and A. J. Pritchard, “Sensors and Actuators in the Analysis of Distributed Systems,” In: E. Horwood, Ed., Series in Applied Mathematics, John Wiley, Hoboken, 1988.

[8]   V. Trenoguine, “Analyse Fonctionnelle,” Edition M.I.R., Moscou, 1985.

[9]   A. M. Micheletti, “Perturbazione dello Sopettro di un Elliptic di Tipo Variazionale in Relazione ad uma Variazione del Campo,” (in Italian), Ricerche di Matematica, Vol. XXV Fasc II, 1976.

[10]   A. El Jai and S. El Yacoubi, “On the Number of Actuators in Distributed System,” International Journal of Applied Mathematics and Computer Science, Vol. 3, No. 4, 1993, pp. 673-686.

 
 
Top