IJG  Vol.3 No.1 , February 2012
Multi-Satellite and Sensor Derived Trends and Variation of Snow Water Equivalent on the High-Latitudes of the Northern Hemisphere
ABSTRACT
Utilizing more than 30 years of satellite-microwave sensor derived snow water equivalent data on the high-latitudes of the northern hemisphere we investigate regional trends and variations relative to elevation. On the low-elevation tundra regions encircling the Arctic we find high statistically significant trends of snow water equivalent. Across the high Arctic Siberia and Far East Russia through North America and northern Greenland we find increasing trends of snow water equivalent with local region variations in strength. Yet across the high Arctic of western Russia through Norway we find decreasing trends of snow water equivalent of varying strength. Power density spectra identify significant power at quasi-biennial and associated lunar nodal cycles. These cycles of the upper atmosphere circulation, ENSO and ocean circulation perturbations from tides forms the causative linkage between increasing snow water equivalent on low-elevation tundra landscapes and decreasing coastal sea ice cover as part of the Arctic system energy and mass cycles.

Cite this paper
R. Muskett, "Multi-Satellite and Sensor Derived Trends and Variation of Snow Water Equivalent on the High-Latitudes of the Northern Hemisphere," International Journal of Geosciences, Vol. 3 No. 1, 2012, pp. 1-13. doi: 10.4236/ijg.2012.31001.
References
[1]   M. C. Serreze, D. H. Bromwich, M. P. Clark, A. J. Etringer, T. Zhang and R. Lammers, “Large-Scale Hydor-Climatology of the Terrestrial Arctic Drainage System,” Journal of Geophysical Research, Vol. 108, No. D2, 2003, pp. 8160-8187. doi:10.1029/2001JD000919

[2]   A. G. Bunn, S. J. Goetz, J. S. Kimball and K. Zhang, “Northern High-Latitude Ecosystems Respond to Climate Change,” Eos Transactions American Geophysical Union, Vol. 88, No. 34, 2007, pp. 333-334.

[3]   D. White, L. Hinzman, L. Alessa, J. Cassano, M. Chambers, K. Falkner, J. Francis, W. J. Gutowski Jr., M. Holland, R. M. Holmes, H. Huntington, D. Kane, A. Kliskey, C. Lee, J. McClelland, B. Peterson, T. S. Rupp, F. Straneo, M. Steele, R. Woodgate, D. Yang, K. Yoshikawa and T. Zhang, “The Arctic Freshwater System: Changes and Impacts,” Journal of Geophysical Research, Vol. 112, 2007, G04S54. doi:10.1029/2006JG000353

[4]   U. S. Bhatt, D. A. Walker, M. K. Raynolds, J. C. Comiso, H. E. Epstein, G. Jia, R. Gens, J. E. Pinzon, C. J. Tucker, C. E. Tweedie and P. J. Webber, “Circumpolar Arctic Tundra Vegetation Change Is Linked to Sea Ice Decline,” Earth Interactions, Vol. 14, No. 8, 2010, pp. 1-20, doi:10.1175/2010EI315.1

[5]   G. Grosse, S. Marchenko, V. Romanovsky, K. P. Wickland, N. French, M. Waldrop, L. Bourgeau-Chavez, R. Striegl, J. Harden, M. Turetsky, A. D. McGuire, P. Camill, C. Tarnocai, S. Frolking, E. Schuur and T. Jorgenson, “Vulnerability of High Latitude Soil Organic Carbon in North America to Disturbance,” Journal of Geophysical Research, Vol. 116, 2011, G00K06. doi:10.1029/2010JG001507

[6]   R. E. Dickinson, “Land Surface Processes and Climate -- Surface Albedos and Energy Balance,” In: B. Saltzman, Ed., Advances in Geophysics, Theory of Climate, Vol. 25, Academic Press, New York, 1983.

[7]   B. F. Chao, W. P. O’Connor, A. T. C. Chang, D. K. Hall and J. L. Foster, “Snow Load Effect on the Earth’s Rotation and Gravitational Field, 1979-1985,” Journal of Geo- physical Research, Vol. 92, No. B9, 1987, pp. 9415-9422. doi:10.1029/JB092iB09p09415

[8]   C. K. Seyfert and L. A. Sirkin, “Earth History and Plate Tectonics: An Introduction to Historical Geology,” 2nd Edition, Harper & Row, Publishers, Inc., New York, 1979.

[9]   P. J. Brockwell and R. A. Davis, “Time Series: Theory and Methods,” 2nd Edition, Springer-Verlag, New York, 1991. doi:10.1007/978-1-4419-0320-4

[10]   P. R. Bevington and D. K. Robinson, “Data Reduction and Error Analysis for the Physical Sciences,” 2nd Edition, McGraw-Hill Inc., New York, 1992.

[11]   J. A. Scales, M. L. Smith and S. Treitel, “Introductory Inverse Theory,” Samizdat Press, Golden, 2001.

[12]   G. J. Borradaile, “Statistics of Earth Science Data: Their Distribution in Space, Time and Orientation,” Springer- Verlag, Berlin, 2003.

[13]   K. F. Kunzi, S. Patil and H. Rott, “Snow-Cover Parameters Retrieved from Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) Data,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 20, No. 4, 1982, pp. 452-467. doi:10.1109/TGRS.1982.350411

[14]   A. T. C. Chang, J. L. Foster and D. K. Hall, “Nimbus-7 SMMR Derived Global Snow Cover Parameters,” Annals of Glaciology, Vol. 9, 1987, pp. 39-44.

[15]   A. T. C. Chang, J. L. Foster and D. K. Hall, “Satellite Sensor Estimates of Northern Hemisphere Snow Volume,” International Journal of Remote Sensing, Vol. 11, No. 1, 1990, pp. 167-171. doi:10.1080/01431169008955009

[16]   L. S. Koenig and R. R. Forster, “Evaluation of Passive Microwave Snow Water Equivalent Algorithms in the Depth Hoar-Dominated Snowpack of the Kuparuk River Watershed, Alaska, USA,” Remote Sensing of Environment, Vol. 93, No. 4, 2004, pp. 511-527. doi:10.1016/j.rse.2004.08.004

[17]   E. G. Njoku, “Antenna Pattern Correction Procedures for the Scanning Multichannel Microwave Radiometer (SM- MR),” Boundary-Layer Meteorology, Vol. 18, 1980, pp. 79-98. doi:10.1007/BF00117912

[18]   A. T. C. Chang, J. L. Foster and D. K. Hall, “Effects of Forest on the Snow Parameters Derived from Microwave Measurements during the BOREAS Winter Field Campaign,” Hydrological Processes, Vol. 10, No. 12, 1996, pp. 1565-1574. doi:10.1002/(SICI)1099-1085(199612)10:12<1565::AID-HYP501>3.0.CO;2-5

[19]   R. J. Armstrong and M. J. Brodzik, “Recent Northern Hemisphere Snow Extent: A Comparison of Data from Visible and Microwave Satellite Sensors,” Geophysical Research Letters, Vol. 28, No. 19, 2001, pp. 3673-3676. doi:10.1029/2000GL012556

[20]   A. T. C. Chang, J. L. Foster, D. K. Hall, B. E. Goodison, A. E. Walker and J. R. Metcalfe. “Snow Parameters Derived from Microwave Measurements during the BOREAS Winter Field Experiment,” Journal of Geophysical Research, Vol. 102, No. D24, 1997, pp. 29663-29671. doi:10.1029/96JD03327

[21]   R. Kelly, A. Chang, L. Tsang and J. Foster, “A Prototype AMSR-E Global Snow Area and Snow Depth Algorithm,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 41, No. 2, 2003, pp. 230-242. doi:10.1109/TGRS.2003.809118

[22]   R. E. J. Kelly and A. T. C. Chang, “Development of a Passive Microwave Global Snow Depth Retrieval Algorithm for Special Sensor Microwave Imagery (SSM/I) and Advanced Microwave Scanning Radiometer-EOS (AMSR-E) Data,” Radio Science, Vol. 38, No. 4, 2003, pp. 1-11. doi:10.1029/2002RS002648

[23]   R. J. Kelly and J. L. Foster, “The AMSR-E Snow Water Equivalent Product: Status and Future Development,” American Geophysical Union, Fall Meeting 2005, Abstract #C21C-1134, 2005.

[24]   R. E. J. Kelly, J. L. Foster and D. K. Hall, “The AMSR-E Snow Water Equivalent Product: Algorithm Development and Progress in Product Validation,” Proceedings of the 28th General Assembly of the Union of International Radio Science, New Delhi, 23-29 October 2005.

[25]   S. Biancamaria, N. Mognard, A. Boone, M. Grippa and E. Josberger, “A Satellite Snow Depth Multi-Year Average Derived from SSM/I for the High Latitude Regions,” Remote Sensing of Environment, Vol. 112, No. 5, 2008, pp. 2557-2568. doi:10.1016/j.rse.2007.12.002

[26]   C. Derksen, P. Toose, A. Rees, L. Wang, M. English, A. Walker and M. Sturm, “Development of a Tundra-Spe- cific Snow Water Equivalent Retrieval Algorithm for Satellite Passive Microwave Data,” Remote Sensing of Environment, Vol. 114, No. 8, 2010, pp. 1699-1709. doi:10.1016/j.rse.2010.02.019

[27]   D. K. Hall, R. E. J. Kelly, G. A. Riggs, A. T. C. Chang and J. L. Foster, “Assessment of the Relative Accuracy of Hemispheric-Scale Snow-Cover Maps,” Annals of Glaciology, Vol. 34, 2002, pp. 24-30.

[28]   J. L. Foster, C. Sun, J. P. Walker, R. Kelly, A. Chang, J. Dong and H. Powell, “Quantifying the Uncertainty in Passive Microwave Snow Water Equivalent Observations,” Remote Sensing of Environment, Vol. 94, No. 2, 2005, pp. 187-203. doi:10.1016/j.rse.200409.012

[29]   J. T. Pulliainen, J. Grandell and M. T. Hallikainen, “Retrieval of Surface Temperature in Boreal Forest Zone from SSM/I Data,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 35, No. 5, 1997, pp. 1188-1200. doi:10.1109/36.628786

[30]   A. T. C. Chang, J. L. Foster, R. E. J. Kelly, E. G. Josberger, R. L. Armstrong and N. M. Mognard, “Analysis of Ground-Measured and Passive-Microwave-Derived Snow Depth Variations in Midwinter across the Northern Great Plains,” Journal of Hydormet, Vol. 6, No. 1, 2005, pp. 20-33. doi:10.1175/JHM-404.1

[31]   R. J. Armstrong, M. J. Brodzik, K. Knowles and M. Savoie, “Global Monthly EASE-Grid Snow Water Equivalent Climatology,” National Snow and Ice Data Center, University of Colorado Boulder, 2007. http://nsidc.org/data/docs/daac/nsidc0271_ease_grid_swe_climatology.gd.html

[32]   A. T. C. Chang and A. Rango, “Algorithm Theoretical Basis Document for the AMSR-E Snow Water Equivalent Algorithm, Version 3.1,” NASA Goddard Space Flight Center, 2000. http://nsidc.org/data/amsre/pdfs/amsr_atbd_snow.pdf

[33]   M. Tedesco, R. E. J. Kelly, J. L. Foster and A. T. C. Chang, “AMSR-E/Aqua Monthly L3 Global Snow Water Equivalent EASE-Grids V002,” National Snow and Ice Data Center, University of Colorado Boulder, 2004. http://nsidc.org/data/docs/daac/ae_swe_ease-grids.gd.html.

[34]   F. G. Lemoine, S. C. Kenyon, J. K. Factor, R. G. Trimmer, N. K. Palvis, D. S. Chinn, C. M. Cox, S. M. Klosko, S. B. Luthcke, M. H. Torrence, Y. M. Wang, R. G. Williamson, E. C. Pavlis, R. H. Rapp and T. R. Olson, “The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96,” NASA Goddard Space Flight Center, NASA/ TP-1998-206861, Maryland, 1998.

[35]   National Imagery and Mapping Agency (NIMA), “Department of Defense World Geodetic System 1984: Its Definition, and Relationship with Local Geodetic Systems, TR8350.2, Third Ed., Ammendment 1,” Department of Defense, Washington DC, 2000.

[36]   Z. Altamimi, X. Collilieux, J. Legrand, B. Garayt and C. Boucher, “ITRF2005: A New Release of the International Terrestrial Reference Frame on Time Series of Station Positions and Earth Orientation Parameters,” Journal of Geophysical Research, Vol. 112, 2007, B09401. doi:10.1029/2007JB004949

[37]   P. A. M. Berry, R. G. Smith, J. A. Freeman and J. Benveniste, “Towards a New Global Digital Elevation Model,” In: M. G. Sideris, Ed., Observing Our Change Earth, Vol. 133, Part 2, 2008, pp. 431-435. http://tethys.eaprs.cse.dum.ac.uk

[38]   R. G. Smith, P. A. M. Berry and J. Benveniste, “Representation of Rivers and Lakes within the Forthcoming ACE2 Global Digital Elevation Model,” ESA 2nd Space for Hydrology Workshop, 12-14 November 2007, Geneva. http://earth.esa.int/hydrospace07/participants/04_03/04_03_Smith.pdf

[39]   K. E. Trenberth, “Recent Observed Interdacadal Climate Changes in the Northern Hemisphere,” Bulletin of the American Meteorological Society, Vol. 7, 1990, pp. 988- 993. doi:10.1175/1520-0477(1990)071<0988:ROICCI>2.0.CO;2

[40]   G. Wang and P. Yang, “A Compound Reconstructed Prediction Model for Nonstationary Climate Processes,” International Journal of Climatology, Vol. 25, No. 9, 2005, pp. 1265-1277. doi:10.1002/joc.1158

[41]   A. Dai and T. M. L. Wigley, “Global Patterns of ENSO- Induced Precipitation,” Geophysical Research Letters, Vol. 27, No. 9, 2000, pp. 1283-1286. doi:10.1029/1999GL011140

[42]   O. Timm, M. Pfeiffer and W.-C. Dullo, “Nonstationary ENSO-Precipitation Teleconnections over the Equatorial Indian Ocean Documented in a Coral from the Chagos Archipelago,” Geophysical Research Letters, Vol. 32, 2005, L02701. doi:10.1029/2004GL021738

[43]   D. W. J. Thompson and J. M. Wallace, “Annular Modes in the Extratropical Circulation. Part I: Month-to-Month Variability,” Journal of Climate, Vol. 13, No. 5, 2000, pp. 1000-1016. doi:10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2

[44]   S. B. Feldstein, “The Timescale, Power Spectra, and Climate Noise Properties of Teleconnection Patterns,” Journal of Climate, Vol. 13, No. 24, 2000, pp. 4430-4440.

[45]   R. J. Allen and C. S. Zender, “The Role of Eastern Siberican Snow and Soild Moisture Anomalies in Quasi- Biennial Persistence of the Arctic and North Atlantic Oscillations,” Journal of Geophysical Research, Vol. 116, 2011, D16125. doi:10.1029/2010JD015311

[46]   H. Yndestad, “The Influence of the Lunar Nodal Cycle on Arctic Climate,” ICES Journal of Marine Science, Vol. 63, No. 3, 2006, pp. 401-420.

[47]   I. D. Haigh, M. Eliot and C. Pattiaratci, “Global Influences of the 18.61 Year Nodal Cycle and the 8.85 Year Cycle of Lunar Perigee on High Time Levels,” Journal of Geophysical Research, Vol. 116, 2011, C06025. doi:10.1029/2010JC006645

[48]   M. Shulski and G. Wendler, “The Climate of Alaska,” University of Alaska Press, Fairbanks, 2007.

[49]   D. Ghatak, A. Frei, G. Gong, J. Stroeve and D. Robinson, “On the Emergence of an Arctic Amplification Signal in Terrestrial Arctic Snow Extent,” Journal of Geophysical Research, Vol. 115, 2010, D24105. doi:10.1029/2010JD014007

[50]   G. Wendler, M. Shulski and B. Moore, “Changes in the Climate of the Alaskan North Slope and the Ice Concentration of the Adjacent Beaufort Sea,” Theoretical and Applied Climatology, Vol. 99, No. 1, 2010, pp. 67-74. doi:10.1007/s00704-009-0127-8

[51]   M. C. Serreze, A. P. Barrett, A. G. Slater, R. A. Woodgate, K. Aagaard, R. B. Lammers, M. Steele, R. Moritz, M. Merrdith and C. M. Lee, “The Large-Scale Freshwater Cycle of the Arctic,” Journal of Geophysical Research, Vol. 111, 2006, C11010. doi:10.1029/2005JC003424

 
 
Top