Differential Evolution Using Opposite Point for Global Numerical Optimization

Show more

References

[1] V. Cutello, G. Narzisi, G. Nicosia and M. Pavone, “An Immunological Algorithm for Global Numerical Optimization,” Artificial Evolution: 7th International Conference, Evolution Artificielle, Lecture Notes in Computer Science Vol. 3871, 2006, pp. 284-295.
doi:10.1007/11740698_25

[2] W. Gong, Z. Cai and L. Jiang, “Enhancing the Performance of Differential Evolution Using Orthogonal Design Method,” Applied Mathematics and Computation, Vol. 206, No. 1, 2008, pp. 56-69.
doi:10.1016/j.amc.2008.08.053

[3] R. Storn and K. Price, “Differential Evolution—A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces,” Journal of Global Optimization, Vol. 11, No. 4, 1997, pp. 341-359.
doi:10.1023/A:1008202821328

[4] J. Sun, Q. Zhang and E. P. K. Tsang, “DE/EDA: A New Evolutionary Algorithm for Global Optimization,” Information Sciences, Vol. 169, No. 3-4, 2005, pp. 249-262.

[5] M. M. Ali, C. Storey and A. Torn, “Application of Some Recent Stochastic Global Optimization Algorithms to Practical Problems,” TUCS Technical Report No. 47, Turku Centre for Computer Science, Turku, 1996.

[6] H. P. Schwefel, “Numerical Optimization of Computer Models,” John Wiley & Sons, Chichester, 1981.

[7] J. H. Holland, “Adaptation in Natural and Artificial Systems,” University of Michigan Press, Ann Arbor, 1975.

[8] I. Rechenberg, “Evolution Strategy: Optimization of Technical Systems by Means of Biological Evolution,” Fromman-Holzboog, Stuttgart, 1973.

[9] J. R. Koza, “Genetic Programming: On the Programming of Computers by Means of Natural Selection,” The MIT Press, Cambridge, 1992.

[10] D. B. Fogel, “Applying Evolutionary Programming to Selected Traveling Salesman Problems,” Cybernetics and Systems, Vol. 24, No. 1, 1993, pp. 27-36.
doi:10.1080/01969729308961697

[11] K. E. Parsopoulos and M. N. Vrahatis, “Recent Approaches to Global Optimization Problems through Particle Swarm Optimization,” Natural Computing, Vol. 1, No. 2-3, 2002, pp. 235-306.
doi:10.1023/A:1016568309421

[12] J. Kennedy and R. C. Eberhart, “Particle Swarm Optimization,” Proceedings of the 1995 IEEE International Conference on Neural Networks, Vol. 4, Perth, 27 November-1 December 1995, pp. 1942-1948.
doi:10.1109/ICNN.1995.488968

[13] D. Karabo?a and S. ?kdem, “A Simple and Global Optimization Algorithm for Engineering Problems: Differential Evolution Algorithm,” Turk Journal of Electrical Engineering, Vol. 12, No. 1, 2004, pp. 53-60.

[14] J. Vesterstrom and R. Thomsen, “A Comparative Study of Differential Evolution, Particle Swarm Optimization, and Evolutionary Algorithms on Numerical Benchmark Problems,” 2004 IEEE Congress on Evolutionary Computation, Vol. 2, Portland, 19-23 June 2004, pp. 19801987.

[15] J. J. Liang, A. K. Qin, P. N. Suganthan and S. Baskar, “Comprehensive Learning Particle Swarm Optimizer for Global Optimization of Multi-Modal Functions,” IEEE Transactions on Evolutionary Computation, Vol. 10, No. 3, 2006, pp. 281-295. doi:10.1109/TEVC.2005.857610

[16] R. Storn and K. Price, “Differential Evolution—A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces,” Technical Report TR-95-012, International Computer Science Institute, Berkeley, 1995.

[17] K. Price, R. Storn and J. Lampinen, “Differential Evolution: A Practical Approach to Global Optimization,” Springer-Verlag, Berlin, 2005.

[18] J. Brest, S. Greiner, B. Boskovic, M. Mernik and V. Zumer, “Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems,” IEEE Transactions on Evolutionary Computation, Vol. 10, No. 6, 2006, pp. 646-657.
doi:10.1109/TEVC.2006.872133

[19] A. K. Qin and P. N. Suganthan, “Self-Adaptive Differential Evolution Algorithm for Numerical Optimization,” Proceedings of the 2005 IEEE Congress on Evolutionary Computation, Vol. 2, 2005, pp. 1785-1791.
doi:10.1109/CEC.2005.1554904

[20] S. Das, A. Abraham, U. K. Chakraborty and A. Konar, “Differential Evolution Using a Neighborhood-Based Mutation Operator,” IEEE Transactions on Evolutionary Computation, Vol. 13, No. 3, 2009, pp. 526-553.
doi:10.1109/TEVC.2008.2009457

[21] S. Rahnamayan and G. G. Wang, “Solving Large Scale Optimization Problems by Opposition-Based Differential Evolution (ODE),” WSEAS Transactions on Computers, Vol. 7, No. 10, 2008, pp. 1792-1804.

[22] S. Rahnamayan, H. R. Tizhoosh and M. M. A. Salama, “Opposition-Based Differential Evolution,” IEEE Transactions on Evolutionary Computation, Vol. 12, No. 1, 2008, pp. 64-79. doi:10.1109/TEVC.2007.894200

[23] S. Rahnamayan, H. R. Tizhoosh and M. M. A. Salama, “Opposition versus Randomness in Soft Computing Techniques,” Elsevier Journal on Applied Soft Computing, Vol. 8, No. 2, 2008, pp. 906-918.
doi:10.1016/j.asoc.2007.07.010

[24] H. R. Tizhoosh, “Opposition-Based Reinforcement Learning,” Journal of Advanced Computational Intelligence and Intelligent Informatics, Vol. 10, No. 4, 2006, pp. 578585.

[25] H. A. Abbass, R. Sarker and C. Newton, “PDE: A Paretofrontier Differential Evolution Approach for Multi-Objective Optimization Problems,” 2001 IEEE Congress on Evolutionary Computation, Vol. 2, Seoul, 27-30 May 2001, pp. 971978.

[26] M. Ali, M. Pant and V. P. Singh, “Two Modified Differential Evolution Algorithms and Their Applications to Engineering Design Problems,” World Journal of Modelling and Simulation, Vol. 6, No. 1, 2010, pp.72-80.

[27] Z. Y. Yang, K. Tang and X. Yao, “Self-Adaptive Differential Evolution with Neighborhood Search,” 2008 Congress on Evolutionary Computation, Hong Kong, 1-6 June 2008, pp. 1110-1116.

[28] Z. Michalewicz, “Genetic Algorithms + Data Structures = Evolution Programs,” 3rd Edition, Springer, Berlin, 1996.

[29] K. Zielinski, P. Weitkemper, R. Laur and K.-D. Kammeyer, “Examination of Stopping Criteria for Differential Evolution Based on a Power Allocation Problem,” Pro ceedings of the 10th International Conference on Optimization of Electrical and Electronic Equipment, Vol. 3, Brasov, 18-19 May 2006, pp. 149-156.

[30] Y. Ao and H. Chi, “An Adaptive Differential Evolution Algorithm to Solve Constrained Optimization Problems in Engineering Design,” Engineering, Vol. 2, No. 1, 2010, pp. 65-77. doi:10.4236/eng.2010.21009

[31] C. Dai, W. Chen, Y. Song and Y. Zhu, “Seeker Optimization Algorithm: A Novel Stochastic Search Algorithm for Global Numerical Optimization,” Journal of Systems Engineering and Electronics, Vol. 21, No. 2, 2010, pp. 300311.

[32] X. Yao, Y. Liu and G. Lin, “Evolutionary Programming Made Faster,” IEEE Transactions on Evolutionary Computation, Vol. 3, No. 2, 1999, pp. 82-102.
doi:10.1109/4235.771163

[33] A.-R. Hedar and M. Fukushima, “Directed Evolutionary Programming: Towards an Improved Performance of Evolutionary Programming,” 2006 IEEE Congress on Evolutionary Computation, Vancouver, 11 September 2006, pp. 1521-1528.