Spatial Inhomogenity Due to Turing Instability in a Capital-Labour Model

Shaban Aly^{*}

Show more

References

[1] A. M. Turing, “The Chemical Basis of Morphogensis,” Philosophical Transactions of the Royal Society B, Vol. 237, No. 641, 1953, pp. 37-72.
doi:10.1098/rstb.1952.0012

[2] M. Farkas, “Two Ways of Modeling cross Diffusion,” Nonlinear Analysis: Theory, Methods & Applications, Vol. 30, No. 2, 1997, pp. 1225-1233.
doi:10.1016/S0362-546X(96)00161-7

[3] M. Farkas, “Dynamical Models in Biology,” Academic Press, Cambridge, 2001.

[4] Y. Huang and O. Diekmann, “Interspecific Influence on Mobility and Turing Instability,” Bulletin of athematical Biology, Vol. 65, No. 1, 2003, pp. 143-156.
doi:10.1006/bulm.2002.0328

[5] J. D. Murray, “Mathematical Biology,” Springer-Verlag, Berlin, 1989.

[6] S. Aly and M. Farkas, “Competition in Patchy Environment with cross Diffusion,” Nonlinear Analysis: Theory, Methods & Applications, Vol. 5, No. 4, 2004, pp. 589-595.
doi:10.1016/j.nonrwa.2003.10.001

[7] S. Aly and M. Farkas, “Bifurcation in a Predator-Prey Model in Patchy Environment with Diffusion,” Nonlinear Analysis: Theory, Methods & Applications, Vol. 5, No. 3, 2004, pp. 519-526. doi:10.1016/j.nonrwa.2003.11.004

[8] S. Aly, “Bifurcations in a Predator-Prey Model with Diffusion and Memory,” International Journal of Bifurcation and Chaos, Vol. 16 No. 6, 2006, pp. 1855-1863.
doi:10.1142/S0218127406015751

[9] Y. Takeuchi, “Global Dynamical Properties of Lotka-Volterra System,” World Scientific, Hackensack, 1996.

[10] M. Farkas, “On the Distribution of Capital and Labour in a Closed Economy,” Southeast Asian Bulletin of Mathematics, Vol. 19 No. 2, 1995, pp. 27-37.