New Oscillation Results for Forced Second Order Differential Equations with Mixed Nonlinearities

Show more

References

[1] J. S. W. Wong, “Oscillation Criteria for a Forced SecondOrder Linear Differential Equation,” Journal of Mathematical Analysis and Applications, Vol. 231, No. 1, 1999, pp. 235-240. doi:10.1006/jmaa.1998.6259

[2] W. T. Li and S. S. Cheng, “An Oscillation Criterion for Nonhomogeneous Half-Linear Differential Equations,” Applied Mathematics Letters, Vol. 15, No. 3, 2002, pp. 259-263. doi:10.1016/S0893-9659(01)00127-6

[3] J. V. Manojlovic, “Oscillation Criteria for Second-Order Half-Linear Differential Equations,” Mathematical and Computer Modelling, Vol. 30, No. 5-6, 1999, pp. 109119. doi:10.1016/S0895-7177(99)00151-X

[4] Q. R. Wang, “Oscillation and Asymptotics for SecondOrder Half-Linear Differential Equations,” Applied Mathematics and Computation, Vol. 122, No. 2, 2001, pp. 253266. doi:10.1016/S0096-3003(00)00056-4

[5] Q. R. Wang and Q. G. Yang “Interval Criteria for Oscillation of Second-Order Half-Linear Differential Equations,” Journal of Mathematical Analysis and Applications, Vol. 291, No. 1, 2004, pp. 224-236.
doi:10.1016/j.jmaa.2003.10.028

[6] J. Jaros and T. Kusano, “A Picone Type Identity for Second Order Half-Linear Differential Equations,” Acta Mathematica Universitatis Comenianae, Vol. 68, No. 1, 1999, pp. 137-151.

[7] A. Elbert, “A Half-Linear Second Order Differential Equation,” Colloquia Mathematica Societatis Janos Bolyai: Qualitative Theory of Differential Equations, Szeged, 1979, pp. 153-180.

[8] A. Wintner, “A Criterion of Oscillatory Stability,” Quarterly of Applied Mathematics, Vol. 7, 1949, pp. 115-117.

[9] I. V. Kamenev, “An Integral Criterion for Oscillation of Linear Differential Equations of Second Order,” Matematicheskie Zametki Vol. 23, No. 2, 1978, pp. 249-251.

[10] W. Leighton, “Comparison Theorems for Linear Differential Equations of Second Order,” Proceedings of the American Mathematical Society, Vol. 13, 1962, pp. 603610. doi:10.1090/S0002-9939-1962-0140759-0

[11] Q. Kong, “Interval Criteria for Oscillation of Second-Order Linear Ordinary Differential Equation,” Journal of Mathematical Analysis and Applications, Vol. 229, No. 1, 1999, pp. 258-270. doi:10.1006/jmaa.1998.6159

[12] H. J. Li and C. C. Yeh, “Sturm Comparison Theorem for Half-Linear Second Order Differential Equations,” Proceedings of the Royal Society of Edinburgh, Vol. A125, 1995, pp. 1193-1240. doi:10.1017/S0308210500030468

[13] O. Do?ly and P. ?ehák, “Half-Linear Differential Equations,” North-Holland Mathematics Studies, Vol. 202, Elsevier Science, Amsterdam, 2005.

[14] R. P. Agarwal, S. R. Grace and D. O’Regan, “Oscillation Theory for Second Order Linear, Half-Linear, Superlinear Dynamic Equations,” Kluver, Dordrecht, 2002.

[15] J. Shao, “A New Oscillation Criterion for Forced SecondOrder Quasi-Linear Differential Equations,” Discrete Dynamics in Nature and Society, Vol. 2011, Hindawi Publishing Corporation, New York, pp. 1-8.

[16] Z. Zheng and F. Meng, “Oscillation Criteria for Forced Second Order Quasi-Linear Differential Equations,” Mathematical and Computer Modelling, Vol. 45, No. 1-2, 2007, pp. 215-220. doi:10.1016/j.mcm.2006.05.005

[17] Z. Zheng, X. Wang and H. Han, “Oscillation Criteria for Forced Second Order Differential Equations with Mixed Nonlinearities,” Applied Mathematics Letters, Vol. 22, No. 7, 2009, pp. 1096-1101.
doi:10.1016/j.aml.2009.01.018

[18] J. Jaros, T. Kusano and N. Yoshida, “Generalized Picone’s Formula and Forced Oscillation in Quasi-Linear Differential Equations of the Second Order,” Archivum Mathematicum, Vol. 38, No. 1, 2002, pp. 53-59.

[19] J. Shao and F. Meng, “Generalized Variational Principles on Oscillation for Nonlinear Nonhomogeneous Differential Equations,” Abstract and Applied Analysis, Vol. 2011, 2011, pp. 1-10.

[20] Q. Yang, “Interval Oscillation Criteria for a Forced Second Order Nonlinear Ordinary Differential Equations with Oscillatory Potential,” Applied Mathematics and Computation, Vol. 135, No. 1, 2003, pp. 49-64.

[21] D. ?akmak and A. Tiryaki, “Oscillation Criteria for Certain Forced Second-Order Nonlinear Differential Equations,” Applied Mathematics Letters, Vol. 17, No. 3, 2004, pp. 275-279. doi:10.1016/S0893-9659(04)90063-8

[22] E. Tun?, “A Note on the Oscillation of Second-Order Differential Equations with Damping,” Journal of Computational Analysis and Applications, Vol. 12, No. 2, 2010, pp. 444-453.

[23] E. Tun?, “Interval Oscillation Criteria for Certain Forced Second-Order Differential Equations,” Carpathian Journal of Mathematics, Vol. 28, No. 1, 2012, in Press.

[24] V. Komkov, “A Generalization of Leighton’s Variational Theorem,” Applicable Analysis: An International Journal, Vol. 2, No. 4, 1972, pp. 377-383.
doi:10.1080/00036817208839051

[25] G. H. Hardy, J. E. Littlewood and G. Polya, “Inequalities,” 2nd Edition, Cambridge University Press, Cambridge, 1988.