Numerical Simulation of Nonlinear Surface Gravity Waves Transformation under Shallow-Water Conditions

Show more

References

[1] G. Chapalain, R. Cointe and A. Temperville, “Observed and Modeled Resonantly Interacting Progressive WaterWaves,” Coastal Engineering Journal, Vol. 16, No. 3, 1992, pp. 267-300. doi:10.1016/0378-3839(92)90045-V

[2] Y. Eldeberky and P.A. Madsen, “Determenistic and Stochastic Evolution Equations for Fully Dispersive and Weakly Nonlinear Waves,” Coastal Engineering Journal, Vol. 38, No. 1, 1999, pp. 1-24.
doi:10.1016/S0378-3839(99)00021-6

[3] V. R. Kogan and V. V. Kuznetsov, “Application of the Theory of Analytical Functions in Numerical Simulation of Unsteady Surface Waves,” Zhurnal Vychislitel’Noi Matematiki i Matematicheskoi Fiziki, Vol. 36. No. 10, 1995, pp. 1448-1456.

[4] S. Elgar, C. Norheim, T. Herbers, “Nonlinear Evolution of Surface Wave Spectra on a Beach,” Journal of Physical Oceanography, Vol. 28. No. 7, 1998, pp. 1534-1551.
doi:10.1175/1520-0485(1998)028<1534:NEOSWS>2.0.CO;2

[5] А. А. Litvinenko and G. А. Habahpashev, “Numerical Simulation of Nonlinear Rather Long Two-Dimensional Waves in Basins with Gentle Bottom,” Vytchislitelnye Technologii, Vol. 4, No. 3, 1999, pp. 95-105.

[6] K. Kawasaki, “Numerical Simulation of Breaking and Post-Breaking Wave Deformation Process around a Submerged Breakwater,” Coastal Engineering Journal, Vol. 41. No. 3-4, 1999, pp. 201-223.
doi:10.1142/S0578563499000139

[7] T. H. Herbers, S. Elgar, N. A. Sarap and R. T. Guza, “Nonlinear Dispersion of Surface Gravity Waves in Shallow Water,” Journal of Physical Oceanography, Vol. 32. No. 4, 2002, pp. 182-1193.
doi:10.1175/1520-0485(2002)032<1181:NDOSGW>2.0.CO;2

[8] T. T. Janssen, T. H. Herbers 2002 and J. A. Battjes, “Generalized Evolution Equations for Nonlinear Surface Gravity Waves over Two-Dimensional Topography,” Journal of Fluid Mechanics, Vol. 552, 2006, pp. 393-418.
doi:10.1017/S0022112006008743

[9] G. A. El, R. H. Grimshaw and A. M. Kamchatnov, “Evolution of Solitary Waves and Undular Bores in ShallowWater Ows over a Gradual Slope with Bottom Friction,” Journal of Fluid Mechanics, Vol. 585, 2007, pp. 213-244.
doi:10.1017/S0022112007006817

[10] R. Camassa, J. Huang and L. Lee, “On a Completely Integrable Numerical Scheme for a Nonlinear ShallowWater Wave Equation,” Journal of Nonlinear Mathematical Physics, Vol. 12. No. 1, 2005, pp. 146-162.
doi:10.2991/jnmp.2005.12.s1.13

[11] H. Lamb, “Hydrodynamics,” Dover Publications, Mineola, 1930, p. 524.

[12] G. B. Whitham, “Linear and Nonlinear Waves,” Wiley, New York, 1974, p. 622.

[13] R. Richtmyer and K. Morton, “Difference Methods for Initial-Value Problems,” 2nd Edition, Wiley, New York, 1967, p. 309.

[14] M. Holt, “Numerical Methods in Fluid Dynamics,” SpringerVerlag, New York, 1977, p. 305.

[15] А. А. Samarskyi, “Introduction to Numerical Methods,” Nauka, Glavnaja Redaktsija Fiziko-Matematicheskoi Literatury, Moscow, 1987, p. 288.

[16] “Hydrometeorology and Hydrochemistry of the Seas in the USSR,” Gidrometeoizdat, Vol. 5, The Azov Sea, Saint-Petersburg, 1991, pp. 75-88.

[17] V. А. Mamykina and Yu. P. Khrustalev, “Coastal Zone of the Azov Sea,” Izdatelstvo Rostov State University, Rostov-on-Don., 1980, p. 176.

[18] Y. Goda and K. Morinobu, “Breaking Wave Heights on Horizontal Bed Affected by Approach Slope,” Coastal Engineering Journal, Vol. 40, No. 4, 1998, pp. 307-326.
doi:10.1142/S0578563498000182

[19] I. B. Abbasov, “Study and Simulation of Nonlinear Surface Gravity Waves under Shallow-Water Conditions,” Izvestiya RAN, Atmospheric and Oceanic Physics, Vol. 39, No. 4, 2003, pp. 506-511.

[20] I. B. Abbasov, “Transformation of Nonlinear Surface Gravity Waves under Shallow-Water Conditions,” Applied Mathematics, Vol. 1, No. 4, 2010, pp. 260-264.
doi:10.4236/am.2010.14032