AJAC  Vol.3 No.2 , February 2012
Spectroscopic Discrimination of Bone Samples from Various Species
Abstract: Determining the species of origin of skeletal remains is critical in a forensic and anthropologic context. However, there are very few methods that use a chemical approach to assist in this determination. In this study, Raman spectroscopy was used to discriminate bone samples originating from four different species (bovine, porcine, turkey and chicken). Spectra were obtained using a near infrared laser at 785-nm. All spectra were combined in a single matrix and processed using partial least squares discriminate analysis (PLS-DA) with leave-one-out cross-validation. Three com-ponents were found to adequately describe the system. The first two components which contributed over 85% of spec-tral data was seen to completely separate the four species of origin in a two dimensional scores plot. A 95% confidence interval was draw around score points of each species class with very slight overlap. The first two components were seen to have large contributions from bioapatite and collagen, the main components of bone. This study serves as a preliminary investigation to evaluate the effectiveness of Raman spectroscopy to discriminate the species of origin of bone tissue.
Cite this paper: G. McLaughlin and I. Lednev, "Spectroscopic Discrimination of Bone Samples from Various Species," American Journal of Analytical Chemistry, Vol. 3 No. 2, 2012, pp. 161-167. doi: 10.4236/ajac.2012.32023.

[1]   M. Houck and J. Siegel, “Fundamentals of Forensic Science,” Academic Press, San Diego, 2006.

[2]   A. Chamberlain, “Human Remains,” University of California Press, Los Angeles, 1994.

[3]   C. Cattaneo, D. Porta, D. Gibelli and C. Gamba, “Histological Determination of the Human Origin of Bone Fragments,” Journal of Forensic Sciences, Vol. 54, No. 3, 2009, pp. 531-533. doi:10.1111/j.1556-4029.2009.01000.x

[4]   K. Virkler and I. K. Lednev, “Analysis of Body Fluids for Forensic Purposes: from Laboratory Testing to Non-de- structive Rapid Confirmatory Identification at a Crime Scene,” Forensic Science International, Vol. 188, No. 1-3, 2009, pp. 1-17. doi:10.1016/j.forsciint.2009.02.006

[5]   C. M. Hodges and J. Akhavan, “The Use of Fourier- Transform Raman-Spectroscopy in the Forensic Identification of Illicit Drugs and Explosives,” Spectrochimica Acta Part A—Molecular and Biomolecular Spectroscopy, Vol. 46, 1990, pp. 303-307.

[6]   E. M. A. Ali, H. G. M. Edwards and I. J. Scowen, “In-situ Detection of Single Particles of Explosive on Clothing with Confocal Raman Microscopy,” Talanta, Vol. 78, 2009, pp. 1201-1203. doi:10.1016/j.talanta.2008.12.038

[7]   G. Jochem and R. J. Lehnert, “On the Potential of Raman Microscopy for the Forensic Analysis of Coloured Textile Fibres,” Science & Justice, Vol. 42, No. 2, 2002, pp. 215-221. doi:10.1016/S1355-0306(02)71831-5

[8]   J. Zieba-Palus and R. Borusiewicz, “Examination of Multilayer Paint Coats by the use of Infrared, Raman and XRF Spectroscopy for Forensic Purposes,” Journal of Molecular Structure, Vol. 792-793, 2006, pp. 286-292. doi:10.1016/j.molstruc.2006.03.072

[9]   S. E. J. Bell, L. A. Fido, S. J. Speers and J. Armstrong, “Raman Spectroscopy for Rapid, One-step Forensic Analysis of Paint,” Forensic Science International, Vol. 136, 2003, pp. 354-355.

[10]   S. E. J. Bell, L. A. Fido, S. J. Speers, W. J. Armstrong and S. Spratt, “Forensic Analysis of Architectural Finishes using Fourier Transform Infrared and Raman Spectroscopy, Part II: White Paint,” Applied Spectroscopy, Vol. 59, No. 11, 2005, pp. 1340-1346. doi: 10.1366/0003702052940404

[11]   J. Mania, B. Trzcinska, M. Kunicki and P. Kooecielniak, “Comparison of the CE method with FTIR and Raman Spectrometry in the Field of Forensic Ink Analysis,” Forensic Science International, Vol. 136, 2003, pp. 75-75.

[12]   B. Eckenrode and E. Bartick, “Portable Raman Spectroscopy Systems for Field Analysis,” Forensic Science Communications, Vol. 3, 2001.

[13]   M. D. Hargreaves, K. Page, T. Munshi, R. Tomsett, G. Lynch and H. G. M. Edwards, “Analysis of Seized Drugs using Portable Raman Spectroscopy in an Airport Environment—A Proof of Principle Study,” Journal of Raman Spectroscopy, Vol. 39, No. 7, 2008, pp. 873-880. doi:10.1002/jrs.1926

[14]   M. Perez-Alonso, K. Castro, I. Mar-tinez-Arkarazo, M. Angulo, M. A. Olazabal and J. M. Mada-riaga, “Analysis of Bulk and Inorganic Degradation Products of Stones, Mortars and Wall Paintings by Portable Raman Micro-probe Spectroscopy,” Analytical and Bioanalytical Chemistry, Vol. 379, No. 1, 2004, pp. 42-50. doi:10.1007/s00216-004-2496-2

[15]   J. Aerssens, S. Boonen, G. Lowet and J. Dequeker, “Interspecies Differences in Bone Composition, Density, and Quality: Potential Implications for In Vivo Bone Research,” Endocrinology, Vol. 139, No. 2, 1998, pp. 663- 670. doi: 10.1210/en.139.2.663

[16]   K. Virkler and I. K. Lednev, “Raman Spectroscopy Offers Great Potential for the Nondestructive Confirmatory Identification of Body Fluids,” Forensic Science International, Vol. 181, No. 1-3, 2008, pp. e1-e5. doi:10.1016/j.forsciint.2008.08.004.

[17]   K. Virkler and I. K. Lednev, “Raman Spectroscopic Signature of Semen and its Potential Application to Forensic Body Fluid Identification,” Forensic Science International, Vol. 193, No. 1-3, 2009, pp. 56-62. doi:10.1016/j.forsciint.2009.09.005

[18]   K. Virkler and I. K. Lednev, “Raman Spectroscopic Signature of Blood and its Po-tential Application to Forensic Body Fluid Identification,” Analytical and Bioanalytical Chemistry, Vol. 396, No. 1, 2010, pp. 525-534. doi: 10.1007/s00216-009-3207-9

[19]   K. Virkler and I. K. Lednev, “Forensic Body Fluid Identification: The Raman Spec-troscopic Signature of Saliva,” Analyst, Vol. 135, 2010, pp. 512-517. doi:10.1039/b919393f

[20]   V. Sikirzhytski, K. Virkler and I. K. Lednev, “Discriminant Analysis of Raman Spectra for Body Fluid Identification for Forensic Purposes,” Sensors, Vol. 10, No. 4, 2010, pp. 2869-2884. doi:10.3390/s100402869

[21]   A. Sikirzhytskaya, V. Sikirzhytski and I. K. Lednev, “Raman Spectroscopic Signature of Vaginal Fluid and its Potential Ap-plication in Forensic Body Fluid Identification,” Forensic Science International, 2011, Article in Press. doi:10.1016/j.forsciint.2011.08.015

[22]   K. Virkler and I. Lednev, “Blood Species Identification for Forensic Purposes Using Raman Spectroscopy Combined with Advanced Statistical Analysis,” Analytical Chemistry, Vol. 81, No. 18, 2009, pp. 7773-7777. doi:10.1021/ac901350a

[23]   G. McLaughlin and I. K. Lednev, “Potential Application of Raman Spectroscopy for Determining Burial Duration of Skeletal Remains” Analytical and Bioana-lytical Chemistry, Vol. 401, No. 8, 2011, pp. 2511-2518. doi:10.1007/s00216-011-5338-z

[24]   M. Shimoyama, H. Maeda, H. Sato, T. Ninomiya and Y. Ozaki, “Nondestructive Discrimination of Biological Materials by Near-infrared Fourier Transform Raman Spectroscopy and Chemometrics: Discrimi-nation Among Hard and Soft Ivories of African Elephants and Mammoth Tusks and Prediction of Specific Gravity of the Ivo-ries,” Applied Spectroscopy, Vol. 51, No. 8, 1997, pp. 1154- 1158. doi:10.1366/0003702971941674

[25]   M. Shimoyama, S. Morimoto, and Y. Ozaki, “Non-destructive Analysis of the Two Subspecies of African Elephants, Mammoth, Hippopotamus, and Sperm Whale Ivories by Visible and Short-wave Near Infrared Spectroscopy and Chemometrics,” Analyst, Vol. 129, 2004, pp. 559-563. doi:10.1039/b401003e

[26]   R. H. Brody, H. G. M. Edwards, and A. M. Pollard, “Chemometric Methods Applied to the Differentiation of Fourier-transform Raman Spectra of Ivories,” Analytica Chimica Acta, Vol. 427, 2001, pp. 223-232. doi:10.1016/S0003-2670(00)01206-X

[27]   D. M. Hashim, Y. B. C. Man, R. Norakasha, M. Shuhaimi, Y. Salmah, and Z. A. Syahariza, “Potential Use of Fourier Transform Infrared Spec-troscopy for Differentiation of Bovine and Porcine Gelatins,” Food Chemistry, Vol. 118, No. 3, 2009, pp. 856-860. doi:10.1016/j.foodchem.2009.05.049

[28]   H. G. M. Edwards, N. F. N. Hassan and N. Arya, “Evaluation of Raman Spectros-copy and Application of Chemometric Methods for the Diffe-rentiation of Contemporary Ivory Specimens I: Elephant and Mammalian Species,” Journal of Raman Spectroscopy, Vol. 37, No. 1-3, 2006, pp. 353-360. doi:10.1002/jrs.1458

[29]   J. J. Freeman and M. J. Silva, “Separation of the Raman Spectral Signatures of Bioapatite and Collagen in Compact Mouse Bone Bleached with Hydrogen Peroxide,” Applied Spectroscopy, Vol. 56, No. 6, 2002, pp. 770-775. doi:10.1366/000370202760077513

[30]   K. Golcuk, G. S. Mandair, A. F. Callender, N. Sahar, D. H. Kohn and M. D. Morris, “Is Photobleaching Necessary for Raman Imaging of Bone Tissue using a Green Laser?” Biochimica Et Biophysica Acta-Biomembranes, Vol. 1758, No. 7, 2006, pp. 868-873. doi:10.1016/j.bbamem.2006.02.022

[31]   S. Lars and W. Svante, “Partial Least Squares Analysis with Cross-validation for the Two-class Problem: A Monte Carlo study,” Journal of Chemometrics, Vol. 1, 1987, pp. 185-196.

[32]   M. Barker and W. Rayens, “Partial Least Squares for Discrimination,” Journal of Chemometrics, Vol. 17, No. 3, 2003, pp. 166-173. doi:10.1002/cem.785

[33]   R. Smith and I. Rehman, “Fouri-er-Transform Raman- Spectroscopic Studies of Human Bone,” Journal of Materials Science-Materials in Medicine, Vol. 5, 9-10, No. 1994, pp. 775-778. doi:10.1007/BF00120375

[34]   A. Awonusi, M. D. Morris and M. M. Tecklenburg, “Carbonate Assignment and Calibration in the Raman Spectrum of Apatite,” Calcified Tissue International, Vol. 81, No. 1, 2007, pp. 46-52. doi:10.1007/s00223-007-9034-0

[35]   H. Nocairi, E. M. Qan-nari, E. Vigneau and D. Bertrand, “Discrimination on Latent Components with Respect to Patterns. Application to Multicol-linear Data,” Computational Statistics & Data Analysis, Vol. 48, No. 1, 2005, pp. 139-147. doi:10.1016/j.csda.2002.09.008