AJAC  Vol.3 No.2 , February 2012
The Electrocatalytic Activity of Bare Pyrolytic Graphite and Single Wall Carbon Nanotube Modified Glassy Carbon Sensors Is Same for the Quantification of Bisoprolol Fumarate
Abstract: A comparison of voltammetric behavior of bisoprolol fumarate (BF) at edge and basal plane pyrolytic graphite electrodes (EPPGE/BPPGE) has been made with single wall carbon nanotube modified glassy carbon. The electrochemical properties are investigated exercising the cyclic voltammetry and square wave voltammetry (SWV). Enhanced peak current associated with bisoprolol fumarate oxidation at EPPGE is due to its better electron transfer property. Quantification of bisoprolol fumarate was carried out at pH 7.2 at both the pyrolytic graphite electrodes. Well-defined peak has been observed at ~ 792 and 954 mV at EPPGE and BPPGE respectively for bisoprolol fumarate oxidation. The detection limit is found to be 2.8 × 10–7 M and 7.3 × 10–7 M for EPPGE and BPPGE respectively. A comparison of common quantification parameters for bisoprolol at carbon nanotube modified glassy carbon electrode and bare BPPGE and EPPGE has been made and it is observed that carbon naotube modified glassy carbon exhibits sensitivity and detection limit close to that observed at bare basal plane pyrolytic graphite electrode. The method developed is applicable for determination of bisoprolol fumarate in pharmaceutical preparations and real samples.
Cite this paper: R. Goyal, S. Chatterjee, S. Singh, A. Rana and H. Chasta, "The Electrocatalytic Activity of Bare Pyrolytic Graphite and Single Wall Carbon Nanotube Modified Glassy Carbon Sensors Is Same for the Quantification of Bisoprolol Fumarate," American Journal of Analytical Chemistry, Vol. 3 No. 2, 2012, pp. 106-112. doi: 10.4236/ajac.2012.32015.

[1]   P. Groote, P. V. Ennezat and F. Mouquet, “Bisoprolol in the Treatment of Chronic Heart Failure,” Vascular Health and Risk Management, Vol. 3, No. 4, 2007, pp. 431-439.


[3]   P. Dubach, J. Myers, P. Bonetti, T. Schertler, V. Froelicher, D. Wagner, M. Scheidegger, M. Stuber, R. Luchinger, J. Schwitter and O. Hess, “Effects of Bisoprolol Fumarate on Left Ventricular Size, Function, and Exercise Capacity in Patients with Heart Failure: Analysis with Magnetic Resonance Myocardial Tagging,” American Heart Journal, Vol.143, No. 4, 2002, pp. 676-683. doi:10.1067/mhj.2002.121269


[5]   L. Ding, X. Zhou, X. Guo, Q. Song, J. He and G. Xu, “LC-ESI-MS Method for the Determination of Bisoprolol in Human Plasma,” Journal of Pharmaceutical and Biomedical Analysis, Vol. 44, No. 2, 2007, pp. 520-525. doi:10.1016/j.jpba.2007.03.001

[6]   M. F. Tutunji, H. M. Ibrahim, M. H. Khabbas and L. F. Tutunji, “Simultaneous Determination of Bisoprolol and Hydrochlorothiazide in Human Plasma by HPLC Coupled with Tandem Mass Spectrometry,” Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences, Vol. 877, No. 16-17, 2009, pp. 1689- 1697. doi:10.1016/j.jchromb.2009.04.021

[7]   S. J. Joshi, P. A. Karbhari, S. I. Bhoir, K. S. Bindu and C. Das, “RP-HPLC Method for Simultaneous Estimation of Bisoprolol Fumarate and Hydrochlorothiazide in Tablet Formulation,” Journal of Pharmaceutical and Biomedical Analysis, Vol. 52, No. 3, 2010, pp. 362-371. doi:10.1016/j.jpba.2009.10.021

[8]   J. Wang, X. Zhang, F. Pi, X. Wang and N. Yang, “Tris(2,2′-bipyridyl) Ruthe-nium(II)-bisoprolol-based Electro-chemiluminescence Coupled with Capillary Zone Electrophoresis,” Electrochimica Acta, Vol. 54, No. 8, 2009, pp. 2379-2384. doi:10.1016/j.electacta.2008.10.066

[9]   M. Baecker, S. Beging, M. Biselli, A. Poghossian, J. Wang, W. Zang, P. Wagner and M. J. Schoening, “Concept for a Solid-State Multi-Parameter Sensor System for Cell-Culture Monitoring,” Electrochimica Acta, Vol. 54, No. 25, 2009, pp. 6107-6112. doi:10.1016/j.electacta.2009.02.091

[10]   R. N. Goyal, M. Oyama and S. P. Singh, “Fast Determination of Salbutamol, Abused by Athletes for Doping, in Pharmaceuticals and Human Biological Fluids by Square Wave Voltammetry,” Journal of Electroanalytical Chemistry, Vol. 611, No. 1-2, 2007, pp. 140-148. doi:10.1016/j.jelechem.2007.08.014

[11]   R. N. Goyal, M. Oyama and S. P. Singh, “Simultaneous Determination of Ade-nosine and Adenosine-5′-triphos- phate at Nanogold Modified Indium Tin Oxide Electrode by Osteryoung Square-Wave Vol-tammetry,” Electroanalysis, Vol. 19, No. 5, 2007, pp. 575-581. doi:10.1002/elan.200603766

[12]   J. Wu, K. Y. Chumbimu-ni-Torres, M. Galik, C. Thammakhet, D. A. Haake and J. Wang, “Potentiometric Detection of DNA Hybridization Using En-zyme-Induced Metallization and a Silver Ion Selective Elec-trode,” Analytical Chemistry, Vol. 81, No. 24, 2009, pp. 10007- 10012. doi:10.1021/ac9018507

[13]   R. N. Goyal, A. Tyagi, N. Bachheti and S. Bishnoi, “Voltammetric Determination of Bi-soprolol Fumarate in Pharmaceutical Formulations and Urine Using Single- Wall Carbon Nanotubes Modified Glassy Carbon Electrode,” Electrochimica Acta, Vol. 53, No. 6, 2008, pp. 2802-2808. doi:10.1016/j.electacta.2007.10.057

[14]   C. E. Banks, A. Crossley, C. Salter, S. J. Wilkins and R. G. Compton, “Carbon Nanotubes Contain Metal Impurities Which Are Responsible for the ‘Electrocatalysis’ Seen at Some Nano-tube-Modified Electrodes,” Angewandte Chemie International Edition, Vol. 45, No. 16, 2006, pp. 2533-2537. doi:10.1002/anie.200600033

[15]   R. N. Goyal and S. P. Singh, “Simultaneous Voltammetric Determination of Dopamine and Adenosine Using a Single Walled Carbon Nanotube—Modified Glassy Carbon Electrode,” Carbon, Vol. 46, No. 12, 2008, pp. 1556- 1562. doi:10.1016/j.carbon.2008.06.051

[16]   G. D. Christian and W. C. Purdy, “The Residual Current in Ortho-phosphate Medium,” Journal of Electroanaytical Chemistry, Vol. 3, No. 6, 1962, pp. 363-367. doi:10.1016/0022-0728(62)80012-6

[17]   R. N. Goyal, S. Chatterjee and B. Agrawal, “Electrochemical Investigations of Diclofenac at Edge Plane Pyrolytic Graphite Electrode and Its Determination in Human Urine,” Sensors and Actuators B: Chemical, Vol. 145, No. 2, 2010, pp.743-748. doi:10.1016/j.snb.2010.01.038

[18]   A. J. Bard and L. R. Faulkner, “Fundamentals and Applications,” Electrochemical Methods, Wiley, New York, 1980, p. 525.

[19]   R. H. Wopshall, and I. Shain, “Effects of Adsorption of Electroactive Species in Stationary Electrode Polarography,” Analytical Chemistry, Vol. 39, 1967, pp. 1514-1527. doi:10.1021/ac50156a018

[20]   R. N. Goyal and A. Sangal, “Electrochemical Investigations of Adenosine at Solid Elec-trodes,” Journal of Electroanalytical Chemistry, Vol. 521, No. 1-2, 2002, pp. 72- 80. doi:10.1016/S0022-0728(02)00645-9

[21]   A. Radi, M. A. EL Ries and G. E. Bekhiet, “Electrochemical Oxidation of the Hy-poglycaemic Drug Gliclazide,” Analytical Letters, Vol. 32, No. 8, 1999, pp. 1603-1612. doi:10.1080/00032719908542919

[22]   M. R. C. Massaroppi, S. A. S. Machado and L. A. Avaca, “Electroanalytical Determination of the Herbicide Picloram in Natural Waters by Square Wave Voltammetry,” Journal of Brazilian Chemical Society, Vol. 14, No. 1, 2003, pp. 113-119. doi:10.1590/S0103-50532003000100018

[23]   S. Ko-morsky-Lovric, S. Gagic and R. Penovski, “Voltammetric Determination of Benzoylecgonine,” Analytica Chimica Acta, Vol. 389, No. 1, 1999, pp. 219-223. doi:10.1016/S0003-2670(99)00091-4