AJAC  Vol.3 No.2 , February 2012
Studies on Degradation of Diquat Pesticide in Aqueous Solutions Using Electrochemical Method
Abstract: The C/PbO2 electrode assisted electrochemical removal of diquat dibromide herbicides solutions has been the subject of the present investigation under several operating conditions. The optimum conditions of the treatment process are: current density of 150 mA/cm2, pH 2.2, NaCl concentration 2 g/L, temperature of 10?C and initial diquat concentration of 50 mg/L. The time of electrolysis is 60 min for degradation rate of diquat and chemical oxygen demand (COD) removal is 210 min. The results were obtained by UV-Vis spectrophotometer and the present designed electrode was coincident.
Cite this paper: N. Ghalwa, H. Abu-Shawish, M. Hamada, K. Hartani and A. Basheer, "Studies on Degradation of Diquat Pesticide in Aqueous Solutions Using Electrochemical Method," American Journal of Analytical Chemistry, Vol. 3 No. 2, 2012, pp. 99-105. doi: 10.4236/ajac.2012.32014.

[1]   T. Chichila and S. Walters, “Liquid Chromatographic Determination of Paraquat and Diquat in Crops Using a Silica Column with Aqueous Ionic Mobile Phase,” Journal—Association of Official Analytical Chemists, Vol. 74, 1991, pp. 961-967.

[2]   N. I. Sax, “Dangerous Properties of Industrial Materials,” Sixth edition, VanNostrand Reinhold Company, New York, 1984.

[3]   TOXNET, “National Library of Medicine’s Toxicology Data Network,” Hazardous Substances Da-tabank, Public Health Service, National Institute of Health, U. S. Department of Health and Human Services, NLM, Bethesda, 1985.

[4]   G. L. Berg (Ed.), “Farm Chemicals Handbook,” Meister Publishing Company, Willoughby, 1986.

[5]   F. Mo-gyoródy, “Electrochemical Degradation of Thiocarbamates in NaCl Solution,” Journal of Applied Electrochemistry, Vol. 36, No. 7, 2006, pp. 773-781. doi:10.1007/s10800-006-9136-9

[6]   D. W. Miwa, G. R. P. Malpass, S. A. S. Machado and A. J. Motheo, “Electrochemical Degradation of Carbaryl on Oxide Electrodes,” Water Research, Vol. 40, No. 17, 2006, pp. 3281-3289. doi:10.1016/j.watres.2006.06.033

[7]   A. Vlyssides, D. Ara-poglou, S. Mai and E. M. Barampouti, “Electrochemical Oxidation of Two Organophosphoric Obsolete Pesticide Stocks,” International Journal of Environment and Pollution, Vol. 23, No. 3, 2005, pp. 289-299.

[8]   C. Pulgarin and J. Kiwi, “Overview on Photocatalytic and Electrocatalytic Pretreatment of Industrial Non-Biode- gradable Pollutants and Pesticides,” Chimie, Vol. 50, 1996, pp. 50-55.

[9]   J. Gao, G. Zhao, W. Shi and D. Li, “Microwave Activated Electrochemical Degradation of 2,4-Dichlorophenoxya- cetic Acid at Boron-Doped Diamond Electrode,” Chemo- sphere, Vol. 75, No. 4, 2009, pp. 519-525. doi:10.1016/j.chemosphere.2008.12.018

[10]   C. Flox, P. L. Cabot, F. Centelas, J. A. Garrido, R. M. Rodríguez, C. Arias and E. Brillas, “Electrochemical Combustion of Herbicide Mecoprop in Aqueous Medium Using a Flow Reactor with a Boron-Doped Diamond Anode,” Chemosphere, Vol. 64, No. 6, 2006, pp. 892-902. doi:10.1016/j.chemosphere.2006.01.050

[11]   M. Polcaro, S. Palmas, F. Renoldi and M. Mascia, “On the Performance of Ti/SnO2 and Ti/PbO2 Anodesin Electrochemical Degradation of 2-Chlorophenol for Wastewater Treatment,” Journal of Applied Electro- chemistry, Vol. 29, No. 2, 1999, pp. 147-151. doi:10.1023/A:1003411906212

[12]   C. A. Mart?nez-Huitle, M. A. Quiroz, C. Comninellis, S. Ferro and A. D. Battisti, “Electrochemical Incineration of Chloranilic Acid Using Ti/IrO2, Pb/PbO2 and Si/BDD electrodes,” Electrochimica Acta, Vol. 50, No. 4, 2004, pp. 949-956. doi:10.1016/j.electacta.2004.07.035

[13]   M. H. Abu Shawish N. Abu Ghalwa, M. Hamada and H. Basheer, “Modified Carbon Paste Electrode for Potenti- ometric Determination of Diquat Dibromide Pesticide in Water and Urine samples,” Materials Science and Engineering C, 2011, in Press.

[14]   L. G. Turner and R. E. Carawan, “Using COD to Measure Lost Product,” North Carolina Cooperative Extension Service, No. CD-38, North Carolina State University, 1996.

[15]   K. C. Narasimham and H. V. K. Udupa, “Preparation and Applications of Graphite Substrate Lead Dioxide (GSLD) Anode,” Journal of the Electrochemical Society, Vol. 123, No. 9, 1976, pp. 1294-1298. doi:10.1149/1.2133063

[16]   M. H. Mashhadizadeh, M. Talakesh, M. Peste, A. Momeni, H. Hamidian and M. Mazlum, “A Novel Modified Carbon Paste Electrode for potentiometric Determination of Mercury(II) Ion,” Electroanalysis, Vol. 18, No. 22, 2006 pp. 2174-2179. doi:10.1002/elan.200603643

[17]   PHA, AWWA and WEF, “Standard Methods for the Examination of Water and Waste-water,” 18th Edition, American Public Health Association, Washington DC, 1992.

[18]   H. S. Awad and N. Abo Galwa, “Electrochemical Degradation of Acid Blue and Basic Brown dyes on Pb/PbO2 Electrode in the Presence of Different Con-ductive Electrolyte and Effect of Various Operating Factors,” Chemosphere, Vol. 61, No. 9, 2005, pp. 1327-1335. doi:10.1016/j.chemosphere.2005.03.054

[19]   M. Panizza, C. Bocca and G. Cerisola, “Electrochemical Treatment of Waste Water Containing Poliaromatic Organic Pollutants,” Water Research, Vol. 34, No. 9, 2000, pp. 2601-2605. doi:10.1016/S0043-1354(00)00145-7

[20]   H. Florencio, M. Pires, E. Castro, L. A. Nunes, R. M. Borges and F. M. Costa, “Photodegradation of Diquat and Paraquat in Aqueous Solutions by Titanium Dioxide: Evolution of Degradation Reactions and Characterization of Intermediate,” Chemosphere, Vol. 55, No. 3, 2004, pp. 345-355. doi:10.1016/j.chemosphere.2003.11.013

[21]   K. Asokan and K. Subramanian, “Design of a Tank Electrolyser for in-Situ Generation of NaClO,” Proceedings of the World Congress on En-gineering and Computer Science, Vol. 1, 2009, pp. 139-142.

[22]   A. Kraft, M. Stadelmann, M. Blaschke, D. Kreysig, B. Sandt, F. Schr?der and J. Rennau, “Electrochemical Water Disinfection Part 1: Hypochlorite Production from Very Dilute Chloride Solutions,” Journal of Applied Electrochemistry, Vol. 29, 1999, pp. 861-868.