MSA  Vol.3 No.2 , February 2012
Synthesis of Fluorite-Type Nanopowders by Citrate-Nitrate Auto-Combustion Process: A Systematic Approach
ABSTRACT
Citrate-nitrate autocombustion process is a promising synthesis route in the field of nanomaterials. This route involves many controlling parameters which ultimately affect properties of the products. In the present research work, the effect of concentration of fuel to that of metal nitrates has been studied in a systematic manner. The nature of exothermic reaction was analyzed with DSC-TGA and the powder properties were characterized by XRD, TEM and BET measurement. The properties of the powders have been explained with respect to fuel content, vigorousness of the exothermic reaction, combustion temperature and duration. The most vigorous reaction was found to occur for the composition with FER of 0.50 with the production of the smallest crystallite size of 9 nm.

Cite this paper
M. Biswas, P. Ojha, C. Prasad, N. Gokhale and S. Sharma, "Synthesis of Fluorite-Type Nanopowders by Citrate-Nitrate Auto-Combustion Process: A Systematic Approach," Materials Sciences and Applications, Vol. 3 No. 2, 2012, pp. 110-115. doi: 10.4236/msa.2012.32017.
References
[1]   A. S. Edelstein and R. C. Cammarata, “Nanomaterials: Synthesis, Properties and Applications,” Institute of Physics Publication, Bristol, 1996.

[2]   K. C. Patil, S. T. Aruna and T. Mimani, “Combustion Synthesis: An Update,” Current Opinion in Solid State & Materials Science, Vol. 6, No. 6, 2002, pp. 507-512. doi:10.1016/S1359-0286(02)00123-7

[3]   S. R. Jain, K. C. Adiga and V. R. Pai Verneker, “A New Approach to Thermochemical Calculations of Condensed Fuel-Oxidizer Mixtures,” Combustion and Flame, Vol. 40, No. 6, 1981, pp. 71-79. doi:10.1016/0010-2180(81)90111-5

[4]   K. C. Patil, “Advanced Ceramics: Combustion Synthesis and Properties,” Bulletin of Material Science, Vol. 16, No. 6, 1993, pp. 533-541. doi:10.1007/BF02757654

[5]   M. Marinsek, K. Zupan and J. Maèek, “Ni-YSZ Cermet Anodes Prepared by Citrate/Nitrate Combustion Synthesis” Journal of Power Sources, Vol. 106, No. 1-2, 2002, pp. 178-188. doi:10.1016/S0378-7753(01)01056-4

[6]   A. Chakroborty, A. Das Sharma, B. Maiti and H. S. Maiti, “Preparation of Low-Temperature Sinterable BaCe0.8-Sm0.2O3 Powder by Autoignition Technique,” Materials Letters, Vol. 57, No. 4, 2002, pp. 862-867. doi:10.1016/S0167-577X(02)00886-8

[7]   A. Mali and A. Ataie, “Influence of the Metal Nitrates to Citric Acid Molar Ratio on the Combustion Process and Phase Constitution of Barium Hexaferrite Particles PrepaRed by So-Gel Combustion Method,” Ceramics International, Vol. 30, No. 7, 2004, pp. 1979-1983. doi:10.1016/j.ceramint.2003.12.178

[8]   B. J. Hwang, R. Santhanam and D. G. Liu, “Effect of Various Synthetic Parameters on Purity of LiMn2O4 Spinel Synthesized by a Sol-Gel Method at Low Temperature,” Journal of Power Sources, Vol. 101, No. 1, 2001, pp. 86-89. doi:10.1016/S0378-7753(01)00657-7

[9]   T. Peng, X. Liu, K. Dai, J. Xiao and H. Song, “Effect of Acidity on the Glycine-Nitrate Combustion Synthesis of Nanocrystalline Alumina Powder,” Materials Research Bulletin, Vol. 41, No. 9, 2006, pp. 1638-1645. doi:10.1016/j.materresbull.2006.02.026

[10]   O. Burgos-Montes, R. Moreno, M. T. Colomer and J. C. Fari?nas, “Influence of Combustion Aids on Suspension Combustion Synthesis of Mullite Powders,” Journal of the European Ceramic Society, Vol. 26, No. 15, 2006, pp. 3365-3372. doi:10.1016/j.jeurceramsoc.2005.08.006

[11]   S. Biamino and C. Badini, “Combustion Synthesis of Lanthanum Chromite Starting from Water Solutions: Investigation of Process Mechanism By DTATGA-MS,” Journal of the European Ceramic Society, Vol. 24, No. 10-11, 2004, pp. 3021-3024. doi:10.1016/j.jeurceramsoc.2003.10.005

[12]   C.-C. Hwang, T.-H. Huang, J.-S. Tsai, C.-S. Lin and C.-H. Peng, “Combustion Synthesis of Nanocrystalline Ceria (CeO2) Powders by a Dry Route,” Materials Science and Engineering: B, Vol. 132, No. 3, 2006, pp. 229-238. doi:10.1016/j.mseb.2006.01.021

[13]   A. S. Mukasyan, P. Epstein and P. Dinka, “Solution Combustion Synthesis of Nanomaterials,” Proceedings of the Combustion Institute, Vol. 31, No. 2, 2007, pp. 1789-1795. doi:10.1016/j.proci.2006.07.052

[14]   V. Chandramouli, S. Anthonysamy and P. R. Vasudeva Rao, “Combustion Synthesis of Thoria a Feasibility Study,” Journal of Nuclear Materials, Vol. 265, No. 3, 1999, pp. 255-261. doi:10.1016/S0022-3115(98)00688-6

[15]   J. Poth, R. Haberkorn and H. P. Beck, “Combustion-Synthesis of SrTiO3. Part I. Synthesis and Properties of the Ignition Products,” Journal of the European Ceramic Society, Vol. 20, 2000, pp. 707-713.

[16]   M. Biswas, K. Shashidhara, P. K. Ojha and T. K. Chongdar, “Linear Combination of Atomic Orbitals Approximation in Nanocrystalline Yittria-Stabilized Zirconia Synthesized by Citrate-Nitrate Gel Combustion Process,” Journal of the American Ceramic Society, Vol. 91, No. 3, 2008, pp. 934-937. doi:10.1111/j.1551-2916.2007.02218.x

[17]   B. D. Culity, “Elements of X-Ray Diffraction,” AddisonWesley, Reading, 1978.

[18]   R. E. Juarez, D. G. Lamas, G. E. Lascalea and N. E. Walsoe de Reca, “Synthesis of Nanocrystalline Zirconia Powders for TZP Ceramics by a Nitrate-Citrate Combustion Route,” Journal of the European Ceramic Society, Vol. 20, No. 2, 2000, pp. 133-138. doi:10.1016/S0955-2219(99)00146-6

[19]   K. A. Singh, L. C. Pathak and S. K. Roy, “Effect of Citric Acid on the Synthesis of Nano-Crystalline Yttria Stabilized Zirconia Powders by Nitrate-Citrate,” Ceramics International, Vol. 33, No. 8, 2007, pp. 1463-1468. doi:10.1016/j.ceramint.2006.05.021

[20]   L. C. Pathak, T. B. Singh, S. Das, A. K. Verma and P. Ramachandrarao, “Effect of pH on the Combustion Synthesis of Nano-Crystalline Alumina Powder,” Materials Letters, Vol. 57, No. 2, 2002, pp. 380-385. doi:10.1016/S0167-577X(02)00796-6

[21]   M. Bhagwat, P. Shah and V. Ramaswamy, “Synthesis of Nanocrystalline SnO2 Powder by Amorphous Citrate Route,” Materials Letters, Vol. 57, No. 9-10, 2003, pp. 1604-1611. doi:10.1016/S0167-577X(02)01040-6

[22]   R. D. Purohit, S. Saha and A. K. Tyagi, “Combustion Synthesis of Nanocrystalline ZrO2 Powder: XRD, Raman Spectroscopy and TEM Studies,” Materials Science and Engineering: B, Vol. 130, No. 1-3, 2006, pp. 57-60. doi:10.1016/j.mseb.2006.02.041

 
 
Top