JBPC  Vol.3 No.1 , February 2012
Laccases stabilization with phosphatidylcholine liposomes
Abstract: In recent years, there has been an upsurge of interest in enzyme treatment of textile fibres. Enzymes are globular proteins whose catalytic function is due to their three dimensional structure. For this reason, stability strategies make use of compounds that avoid dismantling or distorting protein 3D structures. This study is concerned with the use of microencapsulation techniques to optimize enzyme stabilization. Laccases were embedded in phophatidylcholine liposomes and their encapsulation capacity was assessed. Their enzymatic activity and stability were analyzed, comparing free-enzymes, enzymes in liposomes, and the lipid fraction separated from the aqueous fraction. An increase in their encapsulation efficiency was found at higher lipid/laccase ratios. Relative activity of enzyme-containing vesicles has also been shown to be retained much more than that of free native enzymes. The loss of activity of laccases entrapped in the vesicles in the total stability process is lower than 10% compared with 40% to 60% of loss of free-laccases after heating the samples for 3 days. Laccase stabilization could be of interest to future textile or cosmetic applications because of their potential for environmentally friendly oxidation technologies.
Cite this paper: Martí, M. , Zille, A. , Cavaco-Paulo, A. , Parra, J. and Coderch, L. (2012) Laccases stabilization with phosphatidylcholine liposomes. Journal of Biophysical Chemistry, 3, 81-87. doi: 10.4236/jbpc.2012.31010.

[1]   Iyer, P.V. and Ananthanarayan, L. (2008) Enzyme stability and stabilization-aqueous and non-aqueous environment. Process Biochemistry, 43, 1019-103. doi:10.1016/j.procbio.2008.06.004

[2]   Gregoriadis, G., Florence, A.T. and Patel, H.M. (1993) Liposomes in drug delivery. Harwood Academic Publishers, London.

[3]   Gregoriadis, G. (1999) DNA vaccines: A role for liposomes. Current Opinion in Molecular Therapeutics, 1, 39-42.

[4]   Rosenberg, M.F., Jones, M.N. and Vadgama, P.M. (1991) A liposomal enzyme electrode for measuring glucose. Biochimica et Biophysica Acta, 1115, 157-165.

[5]   Walde, P. and Marzetta, B. (1998) Bilayer permeability-based substrate selectivity of an enzyme in liposomes. Biotechnology and Bioengeering, 57, 216-219. doi:10.1002/(SICI)1097-0290(19980120)57:2<216::AID-BIT10>3.3.CO;2-2

[6]   Walde, P. and Ichikawa, S. (2001) Enzymes inside lipid vesicles: Preparation, reactivity and applications, Biomololecular Engineering, 18, 143-177. doi:10.1016/S1389-0344(01)00088-0

[7]   Winterhalter, M., Hilty, C., Bezrukov, S.M., Nardin, C., et al. (2001) Controlling membrane permeability with bacterial porins: Application to encapsulated enzymes. Talanta, 55, 965-971. doi:10.1016/S0039-9140(01)00494-5

[8]   Han, X., Li, G. and Li, K. (1998) FTIR study of the thermal denaturation of a-actinin in its lipid-free and dioleoylphosphatidylglycerol-bound states and the central and N-terminal domains of a-actinin in D2O. Biochemistry, 37, 10730-10737. doi:10.1021/bi9800451

[9]   Nasseau, M., Boublik, Y., Meier, W., Winterhalter, M., et al. (2001) Substrate-permeable encapsulation of enzymes maintains effective activity, stabilizes against denaturation and protects against proteolytic degradation. Biothechnology and Bioengeering, 75, 615-618. doi:10.1002/bit.10074

[10]   Kulin, S., Kishore, R., Helmerson, K. and Locascio, L. (2003) Optical manipulation and fusion of liposomes as microreactors. Langmuir, 19, 8206-8210. doi:10.1021/la0344433

[11]   Vamvakaki, V., Fournier, D. and Chaniotakis, N.A. (2005) Fluorescence detection of enzymatic activity within a liposome based nanobiosensor. Biosensors and Bioelectronics, 21, 384-388. doi:10.1016/j.bios.2004.10.028

[12]   Kamidate, T., Komatsu, K., Tani, H. and Ishida, A. (2008) Direct determination of horseradish peroxidase encapsulated in liposomes by using luminol chemiluminescence. Analytical Sciences, 24, 477-481. doi:10.2116/analsci.24.477

[13]   Minussi, R.C., Pastore, G.M. and Durán, N. (2002) Potential applications of laccase in the food industry. Trends in Food Science & Technology, 13, 205-216. doi:10.1016/S0924-2244(02)00155-3

[14]   Kuhad, R.C., Singh, A. and Eriksson, K.E.L. (1997) Advances in biochemical engineering biotechnology. In: Eriksson, K.E.L., Ed., Biotechnology in the Pulp and Paper Industry, Springer Verlag, Berlin.

[15]   Rodríguez Couto, S. and Toca Herrera, J.L. (2006) Industrial and biotechnological applications of laccases: A review. Biotechnology Advances, 24, 500-513. doi:10.1016/j.biotechadv.2006.04.003

[16]   Zille, A., Tzanov, T., Gübitz, G. and Cavaco-Paulo, A. (2003) Immobilized laccase for decolourization of reactive black 5 dyeing. Biotechnology Letters, 25, 1473-1477. doi:10.1023/A:1025032323517

[17]   Zille, A., Górnacka, B., Rehorek, A. and Cavaco-Paulo, A. (2005) Degradation of azo dyes by trametes villosa laccase over long periods of oxidative conditions. Applied and Environmental Microbiology, 71, 6711-6718. doi:10.1128/AEM.71.11.6711-6718.2005

[18]   Vinoid, S. (2001) Enzymatic decolourisation of denims: A novel approach. Colourage, 48, 25-26.

[19]   Tzanov, T., Silva, C.J., Zille, A., Oliveira, J. and Cavaco-Paulo, A. (2003) Effect of some process parameters in enzymatic dyeing of wool. Applied Biochemistry and Biothecnology, 111, 1-13. doi:10.1385/ABAB:111:1:1

[20]   Setti, L., Giuliani, S., Spinozzi, G. and Pifferi, P.G. (1999) Laccase catalyzed-oxidative coupling of 3-methyl 2-benzothiazolinone hydrazone and methoxyphenols. Enzyme and Microbial Technology, 25, 285-289. doi:10.1016/S0141-0229(99)00059-9

[21]   Silva, C., Silva, C.J., Zille, A., Güebitz, G.M. and Cavaco-Paulo, A. (2007) Laccase immobilization on enzymatically functionalized polyamide 6,6 fibres. Enzyme and Microbial Technology, 41, 867-875. doi:10.1016/j.enzmictec.2007.07.010

[22]   Kim, S.Y., Zille, A., Murkovic, M., Güebitz, G. and Cavaco-Paulo, A. (2007) Enzymatic polymerization on the surface of the functionalized cellulose fibres. Enzyme and Microbial Technology, 40, 1782-1787. doi:10.1016/j.enzmictec.2007.01.001

[23]   Roure, M., Delattre, P. and Froger, H. (1992) Composition for an enzymatic coloration of keratin fibres, especially for hair and its use in a dyeing process. European Patent Application EP0504005.

[24]   Montazer, M., Validi, M. and Toliyat, T. (2006) Influence of temperature on stability of multilamellar liposomes in wool dyeing. Journal of Liposome Research, 16, 81-89. doi:10.1080/08982100500528883

[25]   Martí, M., de la Maza, A., Parra, J.L. and Coderch, L. (2001) Dyeing wool at low temperatures: New method using liposomes. Textile Research Journal, 71, 678-682. doi:10.1177/004051750107100805

[26]   de Pera, M., Coderch, L., Fonollosa, J., de la Maza, A., et al. (2000) Effect of internal wool lipid liposomes on skin repair. Skin pharmacol. Applied Skin Physiology, 13, 188-195. doi:10.1159/000029925

[27]   Ramírez, R., Martí, M., Cavaco-Paulo, A., Siva, R., de la Maza, A., Parra, J.L. and Coderch, L. (2009) Liposome formation with wool lipid extracts rich in ceramides. Journal of Liposome Research, 19, 77-83. doi:10.1080/08982100802538838

[28]   Bradford, M.M. (1976) A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Bio- chemistry, 72, 248-254. doi:10.1016/0003-2697(76)90527-3

[29]   Technical Bulletin of Bradford Reagent, Sigma-Aldrich (USA).

[30]   Childs, R.E. and Bardsley, W.G. (1975) The steady-state kinetics of peroxidase with 2, 2’-azino-di-(3-ethyl-benzthiazoline-6-sulphonic acid) as chromogen. Biochemical Journal, 145, 93-103.

[31]   Li, M., Handford, M.J., Kim, J.W. and Peeples, T.L. (2007) Amyloglucosidase enzymatic reactivity inside lipid vesicles. Journal of Biological Engineering, 1, 4. doi:10.1186/1754-1611-1-4

[32]   Colletier, J-P., Chaize, B., Winterhalter, M. and Fournier, D. (2002) Protein encapsulation in liposomes: Efficiency depends on interactions between protein and phospholipid bilayer. BMC Biotechnology, 2, 9. doi:10.1186/1472-6750-2-9

[33]   Kirby, C.J., Brooker, B.E. and Law, B.A. (1987) Accelerated ripening of cheese using liposome-encapsulated enzymes. International Journal of Food Science and Technology, 22, 355-375. doi:10.1111/j.1365-2621.1987.tb00499.x

[34]   Naoi, M., Naoi, M., Shimizu, T., Malviya, A. and Yagi, K. (1977) Permeability of amino acids into liposomes. Biochimica et Biophysica Acta, 471, 305-310. doi:10.1016/0005-2736(77)90258-9

[35]   Law, B.A. and King, J.S. (1985) Use of liposomes for Proteinase addition to Cheddar cheese. Journal of Dairy Research, 52, 183-188. doi:10.1017/S0022029900024006

[36]   Alkhalaf, W., Piard, J-C., El Soda, M., Gripon, J-C., Desmazeaud, M. and Vassal, L. (1988) Liposomes as proteinase carriers for the accelerated ripening of saint- paulin type cheese. Journal Food Science, 53, 1674-1679. doi:10.1111/j.1365-2621.1988.tb07813.x

[37]   Chaize, B., Colletier, J.P., Winterhalter, M. and Fournier, D. (2004) Encapsulation of enzymes in liposomes. High encapsulation efficiency and control of substrate permeability. Artificial cell blood subtitutes and biomed. Biotechnology, 32, 67-75.

[38]   Rodriguez-Nogales, J.M. (2004) Kinetic Behavior and stability of glucose oxidase entrapped in liposomes. Journal of Chemical Technology and Biotechnology, 79, 72- 78. doi:10.1002/jctb.944

[39]   Kunamneni, A., Ghazi, I., Camarero, S., Ballesteros, A. and Plou, F.J. (2008) Decolorization of synthetic dyes by laccase immobilized on epoxy-activated carriers. Process Biochemistry, 43, 169-178. doi:10.1016/j.procbio.2007.11.009

[40]   Khani, Z., Jolivalt, C., Cretin, M., Tingry, S. and Innocent, C. (2006) Alginate/carbon composite beads for laccasse and glucose oxidase encapsulation: application in biofuel cell technology. Biotechnology Letters, 28, 1779-1786. doi:10.1007/s10529-006-9160-1

[41]   Lloret, L., Eibes, G., Feijo, G., Moreira, M.T., Lema, J.M. and Hollman, F. (2011) Immobilization of laccase by encapsulation in a sol-gel matrix and its chrarcterization and use for the removal of estrogens. Biotechnology Progress, 27, 1570-1579. doi:10.1002/btpr.694

[42]   Niu, J., Yin, L. and Jiang, F. (2011) In situ encapsulation of laccase in nanofibers by electrospinning for development of enzyme biosensors for chlorophenol monitoring. Analyst, 136, 4802-4808.

[43]   Mazur, M., Krywko-Cendrowska, A., Krysinski, P. and Rogalski, J. (2009) Encapsulation of laccase in a conducting polymer matrix: A simple route towards polypyrrole microcontainers. Synthetic Metals, 159, 1731-1738. doi:10.1016/j.synthmet.2009.05.018