JBPC  Vol.3 No.1 , February 2012
Quantitative structure-property relationship (QSPR) model for predicting acidities of ketones
ABSTRACT
Ketones are one of the most common functional groups, and ketone-containing compounds are essential in both the nature and the chemical sciences. As such, the acidities (pKa) of ketones provide valuable information for scientists to screen for biological activities, to determine physical properties or to study reaction mechanisms. Direct measurements of pKa of ketones are not readily available due to their extremely weak acidity. Hence, a quantitative structure-property relationship (QSPR) model that can predict the acidities of ketones and their acidity order is highly desirable. The establishment of an acidity scale in dimethyl sulfoxide (DMSO) solution by Bordwell et al. made such an effort possible. By utilizing the pKa values of forty-eight ketones determined in DMSO as the training set, a QSPR model for predicting acidities of ketones was built by stepwise multiple linear regression analysis. The established model showed statistical significance and predictive power (r2 = 0.91, q2 = 0.86, s = 1.42). Moreover, the QSPR model also gave reasonable acidity predictions for five ketones in an external prediction set that were not included in the model generation phase (r2 = 0.92, s = 1.618). Overall, the reported QSPR model for predicting acidities of ketones provides a useful tool for both biologists and chemists in understanding the biophysical properties and reaction rates of different classes of ketones.

Cite this paper
Yuan, Y. , Mosier, P. and Zhang, Y. (2012) Quantitative structure-property relationship (QSPR) model for predicting acidities of ketones. Journal of Biophysical Chemistry, 3, 49-57. doi: 10.4236/jbpc.2012.31007.
References
[1]   Krebs, H.A. (1961) The physiological role of ketone bodies. Biochemical Journal, 80, 225-233.

[2]   Henderson, S.T. (2010) Ketone bodies as a therapeutic for Alzheimer’s disease. RSC Drug Discovery Series, 2, 275-306.

[3]   Kashiwaya, Y., Takeshima, T., Mori, N., Nakashima, K., Clarke, K. and Veech, R.L. (2000) D-β-Hydroxybutyrate protects neurons in models of Alzheimer’s and Parkinson’s disease. Proceedings of the National Academy of Sciences of the United States of America, 97, 5440-5444. doi:10.1073/pnas.97.10.5440

[4]   Cornille, E., Abou-Hamdan, M., Khrestchatisky, M., Henderson, S.T., Nieoullon, A., de Reggi, M. and Gharib, B. (2010) Enhancement of L-3-hydroxybutyryl-CoA dehydrogenase activity and circulating ketone body levels by pantethine. Relevance to dopaminergic injury. BMC Neuroscience, 11, 51. doi:10.1186/1471-2202-11-51

[5]   Hasebe, N., Abe, K., Sugiyama, E., Hosoi, R. and Inoue, O. (2010) Anticonvulsant effects of methyl ethyl ketone and diethyl ketone in several types of mouse seizure models. European Journal of Pharmacology, 642, 66-71. doi:10.1016/j.ejphar.2010.05.036

[6]   Hauptman, J.S. (2010) From the bench to the bedside: Breaking down the blood-brain barrier, decoding the habenula, understanding hand choice, and the role of ketone bodies in epilepsy. Surgical Neurology International, 1, 86. doi:10.4103/2152-7806.74143

[7]   Sawai, M., Yashiro, M., Nishiguchi, Y., Ohira, M. and Hirakawa, K. (2004) Growth-inhibitory effects of the ketone body, Monoacetoacetin, on human gastric cancer cells with succinyl-CoA: 3-oxoacid CoA-transferase (SCOT) deficiency. Anticancer Research, 24, 2213-2217.

[8]   Novak, M. and Loudon, G.M. (1977) The pKa of acetophenone in aqueous solution. Journal of Organic Chemistry, 42, 2494-2498. doi:10.1021/jo00434a032

[9]   Chiang, Y., Kresge, A.J., Tang, Y.S. and Wirz, J. (1984) The pKa and keto-enol equilibrium constant of acetone in aqueous solution. Journal of the American Chemical Society, 106, 460-462. doi:10.1021/ja00314a055

[10]   Chiang, Y., Kresge, A.J. and Wirz, J. (1984) Flash-photolytic generation of acetophenone enol. The ketoenol equilibrium constant and pKa of acetophenone in aqueous solution. Journal of the American Chemical Society, 106, 6392-6395. doi:10.1021/ja00333a049

[11]   Pollack, R.M., Mack, J.P.G. and Eldin, S. (1987) Direct observation of a dienolate intermediate in the base-catalyzed isomerization of 5-androstene-3,17-dione to 4-and- rostene-3,17-dione. Journal of the American Chemical Society, 109, 5048-5050. doi:10.1021/ja00250a061

[12]   Bordwell, F.G. (1988) Equilibrium acidities in dimethyl sulfoxide solution. Accounts of Chemical Research, 21, 456-463. doi:10.1021/ar00156a004

[13]   Bordwell, F.G. and Bausch, M.J. (1986) Radical cation acidities in dimethyl sulfoxide solution. Journal of the American Chemical Society, 108, 2473-2474. doi:10.1021/ja00269a071

[14]   Bordwell, F.G., Cheng, J.P., et al. (1988) Homolytic bond dissociation energies in solution from equilibrium acidity and electrochemical data. Journal of the American Chemical Society, 110, 1229-1231. doi:10.1021/ja00212a035

[15]   Lowry, T.H. and Richardson, K.S. (1981) Mechanism and theory in organic chemistry. 2nd Edition, Harper and Row, New York.

[16]   Alnajjar, M.S., Zhang, X.-M., Gleicher, G.J., Truksa, S.V. and Franz, J.A. (2002) Equilibrium acidities and homolytic bond dissociation energies of acidic C-H bonds in α-arylacetophenones and related compounds. Journal of Organic Chemistry, 67, 9016-9022. doi:10.1021/jo020275s

[17]   Yu, H.-Y., Kühne, R., Ebert, R.-U. and Schüürman, G. (2010) Comparative analysis of QSAR models for predicting pKa of organic oxygen acids and nitrogen bases from molecular structure. Journal of Chemical Information and Modeling, 50, 1949-1960. doi:10.1021/ci100306k

[18]   Eckert, F. and Klamt, A. (2006) Accurate prediction of basicity in aqueous solution with COSMO-RS. Journal of Computational Chemistry, 27, 11-19. doi:1002/jcc.20309

[19]   Klamt, A., Eckert, F., Diedenhofen, M. and Beck, M.E. (2003) First principles calculations of aqueous pKa values for organic and inorganic acids using COSMO-RS reveal an inconsistency in the slope of the pKa scale. Journal of Physical Chemistry A, 107, 9380-9386. doi:10.1021/jp034688o

[20]   Liptak, M.D. and Shields, G.C. (2001) Accurate pKa Calculations for carboxylic acids using complete basis set and Gaussian-n models combined with CPCM continuum solvation methods. Journal of the American Chemical Society, 123, 7314-7319. doi:10.1021/ja010534f

[21]   Schüürman, G., Cossi, M., Barone, V. and Tomasi, J. (1998) Prediction of the pKa of carboxylic acids using the ab initio continuum-solvation model PCM-UAHF. Journal of Physical Chemistry A, 102, 6706-6712. doi:10.1021/jp981922f

[22]   Schüürman, G. (1998) Quantum chemical analysis of the energy of proton transfer from phenol and chlorophenols to H2O in the gas phase and in aqueous solution. Journal of Chemical Physics, 109, 9523-9528. doi:10.1063/1.477614

[23]   Schüürman, G. (1996) Modelling pKa of carboxylic acids and chlorinated phenols. Quantitative Structure-Activity Relationships, 15, 121-132. doi:10.1002/qsar.19960150206

[24]   Bordwell, F.G. and Harrelson, J.A. Jr. (1990) Acidities and homolytic bond dissociation energies of the αC-H bonds in ketones in DMSO. Canadian Journal of Chemistry, 68, 1714-1718. doi.org/10.1139/v90-266

[25]   Bordwell, F.G., Harrelson, J.A. Jr. and Zhang, X.-M. (1991) Homolytic bond dissociation energies of acidic carbon-hydrogen bonds activated by one or two electron acceptors. Journal of Organic Chemistry, 56, 4448-4450. doi.org/10.1021/jo00014a022

[26]   SYBYL 8.1, Tripos International, St. Louis, USA.

[27]   Kier, L. and Hall, L. (1999) Molecular structure description: The electrotopological state. Academic Press, New York.

[28]   Kier, L. and Hall, L. (1986) Molecular connectivity in structure-activity analysis. Research Studies Press, Chichester.

[29]   Liao, S.-Y., Xu, L.-C., Qian, L. and Zheng, K.-Ch. (2007) QSAR and action mechanism of troxacitabine prodrugs with antitumor activity. Journal of Theoretical & Computational Chemistry, 6, 947-958. doi:10.1142/S0219633607003428

 
 
Top