An Approximate Hotelling T2-Test for Heteroscedastic One-Way MANOVA

References

[1] S. Johansen, “The Welch-James Approximation to the Distribution of the Residual Sum of Squares in a Weighted linear Regression,” Biometrika, Vol. 67, No. 1, 1980, pp. 85-95. doi:10.1093/biomet/67.1.85

[2] K. Krishnamoorthy and F. Lu, “A Parametric Bootstrap Solution to the MANOVA under Heteroscedasticity,” Journal of Statistical Computation and Simulation, Vol. 80, No. 8, 2010, pp. 873-887.
doi:10.1080/00949650902822564

[3] T. W. Anderson, “An Introduction to Multivariate Statistical Analysis,” Wiley, New York, 2003.

[4] K. Krishnamoorthy and Y. Xia, “On Selecting Tests for Equality of Two Normal Mean Vectors,” Multivariate Behavioral Research, Vol. 41, No. 4, 2006, pp. 533-548.
doi:10.1207/s15327906mbr4104_5

[5] K. Krishnamoorthy and J. Yu, “Modified Nel and van der Merwe Test for the Multivariate Behrens-Fisher Problem,” Statistics and Probability Letters, Vol. 66, No. 2, 2004, pp. 161-169. doi:10.1016/j.spl.2003.10.012

[6] G. S. James, “Tests of Linear Hypotheses in Univariate and Multivariate Analysis When the Ratios of the Population Variances Are Unknown,” Biometrika, Vol. 41, No. 1-2, 1954, pp. 19-43.

[7] Y. Yao, “An Approximate Degrees of Freedom Solution to the Multivariate Behrens-Fisher Problem,” Biometrika, Vol. 52, 1965, pp. 139-147.

[8] D. G. Nel and C. A. van der Merwe, “A Solution to the Multivariate Behrens-Fisher Problem,” Communication Statistics: Theory and Methods, Vol. 15, No. 12, 1986, pp. 3719-3735. doi:10.1080/03610928608829342

[9] S. Kim, “A Practical Solution to the Multivariate Behrens- Fisher Problem,” Biometrika, Vol. 79, No. 1, 1992, pp. 171-176. doi:10.1093/biomet/79.1.171

[10] H. Yanagihara and K. H. Yuan, “Three Approximate Solutions to the Multivariate Behrens-Fisher Problem,” Communication Statistics: Simulation and Computation, Vol. 34, No. 4, 2005, pp. 975-988.
doi:10.1080/03610910500308396

[11] A. Belloni and G. Didier, “On the Behrens-Fisher Problem: A Globally Convergent Algorithm and a Finite- Sample Study of the Wald, LR and LM Tests,” Annals of Statistics, Vol. 36, No. 5, 2008, pp. 2377-2408.
doi:10.1214/07-AOS528

[12] W. F. Christensen and A. C. Rencher, “A Comparison of Type I Error Rates and Power Levels for Seven Solutions to the Multivariate Behrens-Fisher Problem,” Communication Statistics: Theory and Methods, Vol. 26, 1997, pp. 1251-1273.

[13] B. L. Welch, “On the Comparison of Several Mean Values: An Alternative Approach,” Biometrika, Vol. 38, 1951, pp. 330-336.

[14] J. Gamage, T. Mathew and S. Weerahandi, “Generalized p-Values and Generalized Confidence Regions for the Multivariate Behrens-Fisher Problem and MANOVA,” Journal of Multivariate Analysis, Vol. 88, No. 1, 2004, pp. 177-189. doi:10.1016/S0047-259X(03)00065-4

[15] K. L. Tang and J. Algina, “Performing of Four Multivariate Tests under Variance-Covariance Heteroscedasticity,” Multivariate Behavioral Research, Vol. 28, No. 4, 1993, pp. 391-405. doi:10.1207/s15327906mbr2804_1

[16] K. Krishnamoorthy, F. Lu and T. Mathew, “A Parametric Bootstrap Approach for ANOVA with Unequal Variances: Fixed and Random Models,” Computational Statistics and Data Analysis, Vol. 51, No. 12, 2007, pp. 5731-5742.
doi:10.1016/j.csda.2006.09.039

[17] J. T. Zhang, “Tests of Linear Hypotheses in the ANOVA under Heteroscedasticity,” Manuscript, 2012.

[18] J. T. Zhang, “An Approximate Degrees of Freedom Test for Heteroscedastic Two-Way ANOVA,” Journal of Statistical Planning and Inference, Vol. 142, 2012, pp. 336-346.

[19] F. E. Satterthwaite, “An Approximate Distribution of Estimate of Variance Components,” Biometrics Bulletin, Vol. 2, No. 6, 1946, pp. 110-114. doi:10.2307/3002019

[20] J. T. Zhang, “Approximate and Asymptotic Distribution of χ2-Type Mixtures with Application,” Journal of American Statistical Association, Vol. 100, No. 469, 2005, pp. 273-285. doi:10.1198/016214504000000575

[21] A. M. Kshirsagar, “Multivariate Analysis,” Marcel Decker, New York, 1972.