The Empirical Prediction of Gas Dispersion Parameters on Mechanical Flotation Cells

ABSTRACT

Gas dispersion properties include bubble size ( ), gas holdup ( ) and bubble surface area flux ( ) and input power ( ) are effective parameters on flotation performance. During the last 10 years, some investigations have been carried out to measure these parameters in mechanical flotation cells. In this research, some models are created to estimate gas dispersion properties and input power by experimental data. Variables of models are impeller peripheral speed ( ), superficial gas velocity ( ) and pulp density ( ) and final form of models are , , and . According to these equations, most effective variables are , and , respectively.

Gas dispersion properties include bubble size ( ), gas holdup ( ) and bubble surface area flux ( ) and input power ( ) are effective parameters on flotation performance. During the last 10 years, some investigations have been carried out to measure these parameters in mechanical flotation cells. In this research, some models are created to estimate gas dispersion properties and input power by experimental data. Variables of models are impeller peripheral speed ( ), superficial gas velocity ( ) and pulp density ( ) and final form of models are , , and . According to these equations, most effective variables are , and , respectively.

Cite this paper

B. Shahbazi, B. Rezai, S. Koleini and M. Noaparast, "The Empirical Prediction of Gas Dispersion Parameters on Mechanical Flotation Cells,"*Engineering*, Vol. 4 No. 1, 2012, pp. 11-17. doi: 10.4236/eng.2012.41003.

B. Shahbazi, B. Rezai, S. Koleini and M. Noaparast, "The Empirical Prediction of Gas Dispersion Parameters on Mechanical Flotation Cells,"

References

[1] J. A. Finch, J. Xiao, C. Hardie and C. O. Gomez, “Gas Disper-sion Properties: Bubble Surface Area Flux and Gas Holdup,” Minerals Engineering, Vol. 13, No. 4, 2000, pp. 365-372. doi:10.1016/S0892-6875(00)00019-4

[2] G. J. Jameson, S. Narn and M. Young, “Physical Factors Affecting Recovery Rates in Flotation,” Mineral Science Engineering, Vol. 9, No. 3, 1977, pp. 103-118.

[3] B. K. Gorain, J. P. Franzidis and E. V. Manlapig, “Studies on Impeller Type, Impeller Speed and Air Flow Rate in an Industrial Scale Flotation Cell. Part 1: Effect on Bubble Size Distribution,” Minerals Engineering, Vol. 8, No. 6, 1995, pp. 615-635. doi:10.1016/0892-6875(95)00025-L

[4] B. K. Gorain, J. P. Franzidis and E. V. Manlapig, “Studies on Impeller Type, Im-peller Speed and Air Flow Rate in an Industrial Scale Flotation Cell. Part 2: Effect on Gas Holdup,” Minerals Engineering, Vol. 8, No. 12, 1995, pp. 1557-1570. doi:10.1016/0892-6875(95)00118-2

[5] B. K. Gorain, J. P. Franzidis and E. V. Manlapig, “Studies on Impeller Type, Im-peller Speed and Air Flow Rate in an Industrial Scale Flotation Cell. Part 3: Effect on Superficial Gas Velocity,” Minerals Engineering, Vol. 9, No. 6, 1996, pp. 639-654. doi:10.1016/0892-6875(96)00052-0

[6] B. K. Gorain, J. P. Franzidis and E. V. Manlapig, “Studies on Impeller Type, Im-peller Speed and Air Flow Rate in an Industrial: Scale Flotation Cell. Part 4: Effect of Bubble Surface Area Flux on Flotation Kinetics,” Minerals Engineering, Vol. 10, No. 4, 1997, pp. 367-379. doi:10.1016/S0892-6875(97)00014-9

[7] E. H. Girgin, S. Do, C. O. Gomez and J. A. Finch, “Bubble Size as a Function of Impeller Speed in a Self-Aeration Laboratory Flotation Cell,” Minerals Engineering, Vol. 19, No. 2, 2006, pp. 201-203. doi:10.1016/j.mineng.2005.09.002

[8] B. K. Gorain, J. P. Franzidis and E. V. Manlapig, “The Empirical Prediction of Bubble Surface Area Flux in Mechanical Flotation Cells from Cell Design and Operating Data,” Minerals Engineering, Vol. 12, No. 3, 1999, pp. 309-322. doi:10.1016/S0892-6875(99)00008-4

[9] R. D. Nevett, “Some Controlling Factors in Flotation,” Proceed-ings—Australasian Institute of Mining and Metallurgy, Vol. 37, No. 37, 1920, pp. 55-72.

[10] B. Shahbazi, B. Rezai and S. M. Javad Koleini, “The Effect of Hydrodynamic Parameters on Probability of Bubble-Particle Collision and Attachment,” Minerals Engineering, Vol. 22, No. 1, 2009, pp. 57-63. doi:10.1016/j.mineng.2008.03.013

[11] B. Shahbazi, B. Rezai and S. M. Javad Koleini, “Bubble-Particle Collision and At-tachment Probability on Fine Particles Flotation,” Chemical Engineering and Processing, Vol. 49, No. 6, 2010, pp. 622-627. doi:10.1016/j.cep.2010.04.009

[12] C. T. O’Connor, E. W. Randall and C. M. Goodall, “Measurement of the Effects of Physical and Chemical Variables on Bubble Size,” Interna-tional Journal of Mineral Processing, Vol. 28, No. 1-2, 1990, pp. 139-149. doi:10.1016/0301-7516(90)90032-T

[13] R. Newell and S. Grano, “Hydrodynamics and Scale-Up in Rushton Turbine Flotation Cells: Part 2. Flotation Scale-Up for Laboratory and Pilot Cells,” International Journal of Mineral Processing, Vol. 81, No. 2, 2006, pp. 65-78.

[14] D. A. Deglon, “The Effect of Agitation on the Flotation of Platinum Ores,” Minerals Engi-neering, Vol. 18, No. 8, 2005, pp. 839-844. doi:10.1016/j.mineng.2005.01.024

[1] J. A. Finch, J. Xiao, C. Hardie and C. O. Gomez, “Gas Disper-sion Properties: Bubble Surface Area Flux and Gas Holdup,” Minerals Engineering, Vol. 13, No. 4, 2000, pp. 365-372. doi:10.1016/S0892-6875(00)00019-4

[2] G. J. Jameson, S. Narn and M. Young, “Physical Factors Affecting Recovery Rates in Flotation,” Mineral Science Engineering, Vol. 9, No. 3, 1977, pp. 103-118.

[3] B. K. Gorain, J. P. Franzidis and E. V. Manlapig, “Studies on Impeller Type, Impeller Speed and Air Flow Rate in an Industrial Scale Flotation Cell. Part 1: Effect on Bubble Size Distribution,” Minerals Engineering, Vol. 8, No. 6, 1995, pp. 615-635. doi:10.1016/0892-6875(95)00025-L

[4] B. K. Gorain, J. P. Franzidis and E. V. Manlapig, “Studies on Impeller Type, Im-peller Speed and Air Flow Rate in an Industrial Scale Flotation Cell. Part 2: Effect on Gas Holdup,” Minerals Engineering, Vol. 8, No. 12, 1995, pp. 1557-1570. doi:10.1016/0892-6875(95)00118-2

[5] B. K. Gorain, J. P. Franzidis and E. V. Manlapig, “Studies on Impeller Type, Im-peller Speed and Air Flow Rate in an Industrial Scale Flotation Cell. Part 3: Effect on Superficial Gas Velocity,” Minerals Engineering, Vol. 9, No. 6, 1996, pp. 639-654. doi:10.1016/0892-6875(96)00052-0

[6] B. K. Gorain, J. P. Franzidis and E. V. Manlapig, “Studies on Impeller Type, Im-peller Speed and Air Flow Rate in an Industrial: Scale Flotation Cell. Part 4: Effect of Bubble Surface Area Flux on Flotation Kinetics,” Minerals Engineering, Vol. 10, No. 4, 1997, pp. 367-379. doi:10.1016/S0892-6875(97)00014-9

[7] E. H. Girgin, S. Do, C. O. Gomez and J. A. Finch, “Bubble Size as a Function of Impeller Speed in a Self-Aeration Laboratory Flotation Cell,” Minerals Engineering, Vol. 19, No. 2, 2006, pp. 201-203. doi:10.1016/j.mineng.2005.09.002

[8] B. K. Gorain, J. P. Franzidis and E. V. Manlapig, “The Empirical Prediction of Bubble Surface Area Flux in Mechanical Flotation Cells from Cell Design and Operating Data,” Minerals Engineering, Vol. 12, No. 3, 1999, pp. 309-322. doi:10.1016/S0892-6875(99)00008-4

[9] R. D. Nevett, “Some Controlling Factors in Flotation,” Proceed-ings—Australasian Institute of Mining and Metallurgy, Vol. 37, No. 37, 1920, pp. 55-72.

[10] B. Shahbazi, B. Rezai and S. M. Javad Koleini, “The Effect of Hydrodynamic Parameters on Probability of Bubble-Particle Collision and Attachment,” Minerals Engineering, Vol. 22, No. 1, 2009, pp. 57-63. doi:10.1016/j.mineng.2008.03.013

[11] B. Shahbazi, B. Rezai and S. M. Javad Koleini, “Bubble-Particle Collision and At-tachment Probability on Fine Particles Flotation,” Chemical Engineering and Processing, Vol. 49, No. 6, 2010, pp. 622-627. doi:10.1016/j.cep.2010.04.009

[12] C. T. O’Connor, E. W. Randall and C. M. Goodall, “Measurement of the Effects of Physical and Chemical Variables on Bubble Size,” Interna-tional Journal of Mineral Processing, Vol. 28, No. 1-2, 1990, pp. 139-149. doi:10.1016/0301-7516(90)90032-T

[13] R. Newell and S. Grano, “Hydrodynamics and Scale-Up in Rushton Turbine Flotation Cells: Part 2. Flotation Scale-Up for Laboratory and Pilot Cells,” International Journal of Mineral Processing, Vol. 81, No. 2, 2006, pp. 65-78.

[14] D. A. Deglon, “The Effect of Agitation on the Flotation of Platinum Ores,” Minerals Engi-neering, Vol. 18, No. 8, 2005, pp. 839-844. doi:10.1016/j.mineng.2005.01.024