PSYCH  Vol.3 No.1 , January 2012
The Reversed Neighborhood Effects in Mental Arithmetic of Spoken Mandarin Number Words
In the present study, under the spoken Mandarin number words format, we employed verification tasks to investigate the neighborhood effects in single-digit multiplication. The results revealed that, in the Arabic digits format condition, the neighborhood effects like as the former studies discovered is natural, however, the unexpected reversed neighborhood effects were found in the spoken Mandarin number words format. Specifically, RTs of higher neighborhood effects multiplication problems were longer than lower neigh- borhood effects.

Cite this paper
Zhang, M. , Si, J. & Zhu, X. (2012). The Reversed Neighborhood Effects in Mental Arithmetic of Spoken Mandarin Number Words. Psychology, 3, 57-61. doi: 10.4236/psych.2012.31009.
[1]   Anderson, J. E., & Holcomb, P. J. (1995). Auditory and visual semantic priming using different stimulus onset asynchronies: An event-re- lated brain potential study. Psychophysiology, 32, 177-190. doi:10.1111/j.1469-8986.1995.tb03310.x

[2]   Butterworth, B., Zorzi, M., Girelli, L., & Jonckheere, A. R. (2001). Storage and retrieval of addition facts: The role of number comparison. The Quarterly Journal of Experimental Psychology A, 54, 1005- 1029. doi:10.1080/713756007

[3]   Campbell, J. I. D. (1994). Architectures for numerical cognition. Cognition, 53, 1-44. doi:10.1016/0010-0277(94)90075-2

[4]   Campbell, J. I. D. (1995). Mechanisms of simple addition and multiplication: A modified network-interference theory and simulation. Mathematical cognition, 1, 121-164.

[5]   Campbell, J. I. D. (1999). The surface form × problem size interaction in cognitive arithmetic: evidence against an encoding locus. Cognition, 70, B25-B33. doi: 10.1016/S0010-0277(99)00009-8

[6]   Campbell, J. I. D., & Clark, J. M. (1988). An encoding-complex view of cognitive number processing: Comment on McCloskey, Sokol, and Goodman (1986). Journal of Experimental Psychology General, 117, 204-214. doi: 10.1037/0096-3445.117.2.204

[7]   Campbell, J. I. D., & Clark, J. M. (1992). Cognitive number processing: An encoding-complex perspective. In J. I. D. Campbell (Ed.), The nature and origins of mathematical skills (pp. 457-491). North-Holland: Elsevier Science Publishers. doi:10.1016/S0166-4115(08)60894-8

[8]   Campbell, J. I. D., & Fugelsang, J. (2001). Strategy choice for arithmetic verification: effects of numerical surface form. Cognition, 80, B21-B30. doi:10.1016/S0010-0277(01)00115-9

[9]   Campbell, J. I. D., & Metcalfe, A. W. S. (2008). Arabic digit naming speed: Task context and redundancy gain. Cognition, 107, 218-237. doi:10.1016/j.cognition.2007.10.001

[10]   Campbell, J. I. D., Parker, H. R., & Doetzel, N. L. (2004). Interactive effects of numerical surface form and operand parity in cognitive arithmetic. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30(1), 51-64. doi: 10.1037/0278-7393.30.1.51

[11]   Domahs F, D. M., Nuerk H. C. (2006). What makes multiplication facts difficult - Problem size or neighborhood consistency? Experimental Psychology, 53, 275-282. doi: 10.1027/1618-3169.53.4.275

[12]   Frank, D., Ulrike, D., Matthias, S., Elie, R., Tom, V., Klaus, W., et al. (2007). Neighborhood consistency in mental arithmetic: Behavioral and ERP evidence. Behavioral and Brain Functions, 3, 66-102. doi:10.1186/1744-9081-3-66

[13]   Galfano, G., Rusconi, E., & Umiltà, C. (2003). Automatic activation of multiplication facts: Evidence from the nodes adjacent to the product. The Quarterly Journal of Experimental Psychology. A, Human Experimental Psychology, 56, 31-61. doi:10.1080/02724980244000332

[14]   Groen, G. J., & Parkman, J. M. (1972). A chronometric analysis of simple addition. Psychological Review, 79, 329-343. doi: 10.1037/h0032950

[15]   Kadosh, R. C. (2008). Numerical representation: Abstract or nonabstract? The Quarterly Journal of Experimental Psychology, 61, 1160- 1168. doi:10.1080/17470210801994989

[16]   Kadosh, R. C., Henik, A., & Rubinsten, O. (2008). Are Arabic and verbal numbers processed in different ways? Journal of Experimental Psychology: Learning, Memory, and Cognition, 34, 1377-1391. doi:10.1037/a0013413

[17]   Metcalfe, A. W. S., & Campbell, J. I. D. (2008). Spoken numbers versus Arabic numerals: Differential effects on adults’ multiplication and addition. Canadian Journal of Experimental Psychology, 62, 56- 61. doi:10.1037/1196-1961.62.1.56

[18]   Rickard, T. C. (2005). A revised identical elements model of arithmetic fact representation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31, 250-257. doi:10.1037/0278-7393.31.2.250

[19]   Robert, N. D., & Campbell, J. I. D. (2008). Simple addition and multiplication: No comparison. European Journal of Cognitive Psychology, 20, 123-138. doi:10.1080/09541440701275823

[20]   Siegler, R. (1988). Strategy choice procedures and the development of multiplication skill. Journal of Experimental Psychology: General, 117, 258-275. doi: 10.1037/0096-3445.117.3.258

[21]   Turconi, E., Campbell, J. I. D., & Seron, X. (2006). Numerical order and quantity processing in number comparison. Cognition, 98, 273- 285. doi:10.1016/j.cognition.2004.12.002

[22]   Verguts, T., & Fias, W. (2005a). Interacting neighbors: A connectionist model of retrieval in single-digit multiplication. Memory & cognition, 33, 1-16. doi:10.3758/BF03195293

[23]   Verguts, T., & Fias, W. (2005b). Neighbourhood effects in mental arithmetic. Psychology Science, 47, 133-140.

[24]   Zebian, S. (2005). Linkages between number concepts, spatial thinking, and directionality of writing: The SNARC effect and the reverse SNARC effect in English and Arabic monoliterates, biliterates, and illiterate Arabic speakers. Journal of Cognition and Culture, 5, 1, 165-190. doi: 10.1163/1568537054068660