Evaluating Effects of Two Alternative Filters for the Incremental Pruning Algorithm on Quality of Pomdp Exact Solutions

References

[1] G. E. Monahan, “A Survey of Partially Observable Markov Decision Processes,” Management Science, Vol. 28, No. 1, 1982, pp. 1-16. doi:10.1287/mnsc.28.1.1

[2] R. D. Smallwood and E. J. Sondik, “The Optimal Control of Partially Observable Markov Processes over a Finite Horizon,” Operations Research, Vol. 21, 1973, pp. 1071- 1088. doi:10.1287/opre.21.5.1071

[3] P. E. Caines, “Linear Stochastic Systems,” John Wiley, New York, 1988.

[4] M. T. J. Spaan, “Cooperative Active Perception Using POMDPs,” AAAI 2008 Workshop on Advancements in POMDP Solvers, 2008.

[5] J. Goldsmith and M. Mundhenk, “Complexity Issues in Markov Decision Processes,” Proceedings of the IEEE Conference on Computational Complexity, New York, 1998.

[6] J. Pineau, G. Gordon and S. Thrun, “Point-Based Value Iteration: An Anytime Algorithm for POMDPs,” Proceedings of the International Joint Conference on Artificial Intelligence, Acapulco, 2003.

[7] T. Smith and R. G. Simmons, “Heuristic Search Value Iteration for POMDPs,” Proceedings of the International Conference on Uncertainty in Artificial Intelligence, Banff, 2004.

[8] M. T. J. Spaan and N. Vlassis, “Randomized Point-Based Value Iteration for POMDPs,” Journal of Artificial Intelligence Research, Vol. 24, 2005, pp. 195-120.

[9] A. Cassandra, M. L. Littman and N. L. Zhang, “Incremental Pruning: A Simple, Fast, Exact Algorithm for Partially Observable Markov Decision Processes,” Proceedings of the 13th Annual Conference on Uncertainty in Artificial Intelligence, Brown, 1997.

[10] R. Moore, “A Formal Theory of Knowledge and Action,” In: J. Hobbs and R. Moore, Eds., Formal Theories of the Commonsense World, Norwood, 1985, pp. 319-358.

[11] A. R. Cassandra, L. P. Kaelbling and M. L. Littman, “Acting Optimally in Partially Observable Stochastic Domains,” Proceedings of the 12th National Conference on Artificial Intelligence, Seattle, 1994.

[12] M. Littman, A. Cassandra and K. L. P, “Efficient Dynamic-Programming Updates in Partially Observable Markov Decision Process,” Brown University, Providence, 1996.

[13] L. D. Pyeatt and A. E. Howe, “A Parallel Algorithm for POMDP Solution,” Proceedings of the 5th European Conference on Planning, Durham, 1999, pp. 73-83.

[14] A. R. Cassandra, “Exact and Approximate Algorithms for Partially Observable Markov Decision Process,” PhD Thesis, Brown University, Brown, 1998.