Back
 JBNB  Vol.3 No.1 , January 2012
Surface Characterization of Titanium Implants Treated in Hydrofluoric Acid
Abstract: The results of XPS measurements of commercially pure titanium cp-Ti) before and after chemical treatment are presented. We have measured XPS spectra of core levels (Ti 2p, O 1s, C 1s, F 1s) and valence bands of coarse-grained cp-Ti before and after standard acid treatment accepted in dentistry (in 1% HF and 40% HF for 1 min). It is found, that acid treatment of cp-Ti reduces the content of hydrocarbons increasing the surface energy and bio-compatibility of Ti-implants. On the other hand, it is fixed that oxygen concentration on the surface of the acid treated cp-Ti is much higher than for the untreated sample, because the acid treatment removes the contaminated surface layers, increases their reactivity, provides a better passivation and formation of thick protecting TiO2 layer.
Cite this paper: D. Korotin, S. Bartkowski, E. Kurmaev, M. Meumann, E. Yakushina, R. Valiev and S. Cholakh, "Surface Characterization of Titanium Implants Treated in Hydrofluoric Acid," Journal of Biomaterials and Nanobiotechnology, Vol. 3 No. 1, 2012, pp. 87-91. doi: 10.4236/jbnb.2012.31011.
References

[1]   D. C. Smith, “Surface Characterization of Implant Materials: Biological Implications,” In: J. E. Davies, Ed., The Bone–Biomaterial Interface, University of Toronto Press, Toronto, 1991, pp. 3-18.

[2]   B. Kasemo and J. Lausmaa, “Metal Selection and Surface Characteristics,” In: P.-I. Branemark, G. A. Zarb and T. Alberktsson, Eds., Tissue-Integrated Prostheses: Osseointegration in Clinical Dentistry, Quintessence, Chicago, 1985, pp. 99-116.

[3]   J. E. Ellingsen, C. B. Johansson, A. Wennerberg and A. Holmen, “Improved Retention and Bone-to-Implant Contact with Fluoride-Modified Titanium Implants,” The International Journal of Oral & Maxillofacial Implants, Vol. 19, No. 5, 2004, pp. 659-666.

[4]   J. E. Ellingsen, “Pre-Treatment of Titanium Implants with Fluoride Improves Their Retention in Bone,” Journal of Materials Science: Materials in Medicine, Vol. 6, No. 12, 1995, pp. 749-753. doi:10.1007/BF00134312

[5]   S. Bartkowski, M. Neumann, E. Z. Kurmaev, V. V. Fedorenko, S. N. Shamin, V. M. Cherkashenko and S. N. Nemnonov, A. Winiarski, D. C. Rubie, “Electronic Structure of Titanium Monoxide,” Physical Review B, Vol. 56, No. 16, 1997, pp. 10656-10667. doi:10.1103/PhysRevB.56.10656

[6]   H. B. Jones, “Teeth and Bones: Application of Surface Science to Dental Materials and Related Biomaterials,” Surface Science Report, Vol. 42, No. 3-5, 2001, pp. 75- 205. doi:10.1016/S0167-5729(00)00011-X

[7]   C. M. Chan, S. Trigwell and T. Ouerig, “Oxidalion of a NiTi Alloy,” Surface and Interface Analysis, Vol. 15, No. 6, 1990, pp. 349-354. doi:10.1002/sia.740150602

[8]   Y.-J. Park, H.-J. Song, I. Kim and H.-S. Yang, “Surface Characteristics and Bioactivity of Oxide Film on Titanium Metal Formed by Thermal Oxidation,” Journal of Materials Science: Materials in Medicine, Vol. 18, No. 4, 2007, pp. 565-575. doi:10.1007/s10856-007-2303-7

[9]   J.-H. Yi, C. Bernard, F. Variola, S. F. Zalzal, J. D. Wuest, F. Rosei and A. Nanci, “Characterization of a Bioactive Nanotextured Surface Created by Controlled Chemical Oxidation of Titanium,” Surface Science, Vol. 600, No. 19, 2006, pp. 4613-4621. doi:10.1016/j.susc.2006.07.053

[10]   S. Takemoto, M. Hattori, M. Yoshinari, E. Kawada and Y. Oda, “Suppression of Fluoride-Induced Corrosion of Titanium by Albumin in Oral Modified Environment”, Journal of Biomedical Materials Research Part B: Applied Biomaterials, Vol. 87, No. 2, 2008, pp. 475-481. doi:10.1002/jbm.b.31129

[11]   U. Diebold, “The Surface Science of Titanium Dioxide,” Surface Science Reports, Vol. 48, No. 5-8, 2003, pp. 53-229. doi:10.1016/S0167-5729(02)00100-0

[12]   H. Hochst, P. Steiner, G. Reiter and S. Hüfner, “XPS Valence Bands of Ti, Zr, Nb, Mo and Hf,” Zeitschrift für Physik B Condensed Matter, Vol. 42, No. 3, 1981, pp. 199-204. doi:10.1007/BF01422023

 
 
Top