[1] K. Katsouyanni, “Ambient Air Pollution and Health,” British Medical Bulletin, Vol. 68, 2003, pp. 143-156.
[2] E. Samoli, A. Analitis, G. Touloumi, J. Schwartz, H. R. Anderson, J. Sunyer, L. Bisanti, D. Zmirou,. J. M. Vonk, J. Pekkanen,. P. Goodman,. A. Paldy,. C. Schindler and K. Katsouyanni, “Estimating the Exposure-Response Rela- tionships between Particulate Matter and Mortality within the APHEA Multicity Project,” Environmental Health Perspectives, Vol. 113, 2005, pp. 88-95.
[3] R. D. Morris, “Airborne Particulates and Hospital Admi- ssions for Cardiovascular Disease: A Quantitative Review of the Evidence,” Environmental Health Perspectives, Vol. 109, Supplement 4, 2001, pp. 495-500.
[4] E. G. Knox and E. A. Gilman, “Hazard Proximities of Childhood Cancer in Great Britain from 1953-1980,” Journal of Epidemiology and Health, Vol. 51, 1997, pp. 151-159.
[5] J. Kukkonen, L. Partanen, A. Karppinen, J. Ruuskanen, H. Junninen, M. Kolehmainen, H. Niska, S. Dorling, T. Chatterton, R. Foxall and G. Cawley, “Extensive Evaluation of Neural Extensive Evaluation of Neural Network Models for the Prediction of NO2 and PM10 Concentrations, Compared with a Deterministic Modell- ing System and Measurements in Central Helsinki,” Atmospheric Environment, Vol. 37, 2003, pp. 4539-4550.
[6] P. Perez, A. Trier and J. Reyes, “Prediction of PM2.5 Concentrations Several Hours in Advance Using Neural Networks in Santiago, Chile,” Atmospheric Environment, Vol. 34, 2000, pp. 1189-1196.
[7] M. W. Gardner, “The Advantages of Artificial Neural Network and Regression Tree Based Air Quality Models,” Ph.D. Dissertation, School of Environmental Sciences, University of East Anglia, Norwich, 1999.
[8] J. Hooyberghs, C. Mensink, G. Dumont, F. Fierens and O. Brasseur, “A Neural Network Forecast for Daily Average PM10 Concentrations in Belgium,” Atmospheric Environ- ment, Vol. 39, No. 18, 2005, pp. 3279-3289.
[9] J. B Ordieres, E. P. Vergara, R. S. Capuz and R. E. Salazar, “Neural Network Prediction Model for Fine Particulate Matter (PM2.5) on the US-Mexico Border in El Paso (Texas) and Ciudad Juαrez (Chihuahua),” Envi- ronmental Modelling & Software, Vol. 20, No. 5, 2005, pp. 547-559.
[10] G. Corani, “Air Quality Prediction in Milan: Feed- Forward Neural Networks, Pruned Neural Networks and Lazy Learning,” Ecological Modelling, Vol. 185, No. 2-4, 2005, pp. 513-529.
[11] C. Lin and C. Lee, “Neural Fuzzy Systems,” Prentice Hall, Upper Saddle River, 1996.
[12] M. Hagan and M. Menhaj, “Training Feed-Forward Networks with the Marquardt Algorithm”, IEEE Transac- tions on Neural Networks, Vol. 5, 1996, pp. 989-993.
[13] T. Chernichow, A. Piras, K. Imhof, P. Caire, Y. Jaccard, B. Dorizzi and A. Germond, “Short Term Electric Load Forecasting with Artificial Neural Networks,” Engine Intelligent Systems, Vol. 2, 1996, pp. 85-99.
[14] J. D Farmer and J. J. Sidorowich, “Predicting Chaotic Dynamics, Dynamic Patterns in Complex Systems,” In: J. A. S. Kelso, A. J. Mandell and M. F. Shlesinger, Ed., World Scientific, 1988, pp. 265-292.
[15] Y. Y. Hong and C. Y. Hsiao, “Locational Marginal Price Forecasting in Deregulated Electricity Markets Using Artificial Intelligence,” IEE Proceedings of Generation Transmission Distribution, Vol. 149, No. 5, 2002, pp. 621-626.
[16] J. Mitchell and S. Abe, “Fuzzy Clustering Networks: Design Criteria for Approximation and Prediction,” IEICE Transactions on Information and Systems, Vol. E79D, No. 1, 1996, pp. 63-71.
[17] A. B. Geva, “Hierarchical-Fuzzy Clustering of Temporal-Patterns and its Application for Time-Series Prediction,” Pattern Recognition Letters, Vol. 20, No. 14, 1999, pp. 1519-1532.
[18] M. Djukanovic, B. Babic, O. J. Sobajic and Y. H. Pao, “24-hour Load Forecasting,” IEE Proceedings – C, Vol. 140, 1993, pp. 311-318.
[19] J. B. McQueen, “Some Methods for Classification and Analysis of Multivariate Observations,” Proceedings of 5th Berkley Symposium on Mathematical Statistics and Probability, Berkeley, 27 December 1965-7 January 1966, pp. 281-297.
[20] D. J. Kim, Y. W. Park and D. J. Park, “A Novel Validity Index for Determination of the Optimal Number of Clus-ters,” IEICE Transactions on Information and Systems, Vol. E84-D, No. 2, 2001, pp. 281-285.