JEP  Vol.3 No.1 , January 2012
Enrichment and Isolation of CO2-Fixing Bacteria with Electrochemical Reducing Power as a Sole Energy Source
Abstract: Enrichment of bacteria capable of growing with electrochemical reducing power and CO2 was accomplished using a plate-type electrochemical bioreactor (PEB). A bacterial source obtained from wastewater treatment reactant and forest soil was cultivated on carbonate-based mineral agar medium prepared in the PEB (PEB-carbonate agar). According to the pyrosequencing analyses, the abundance of Betaproteobacteria and Gammaproteobacteria at the phylum level, and Achromobacter, Alcaligenes, and Pseudomonas at the genus level were selectively increased after the electrochemical enrichment culture. Finally, one genus of bacterium that was autotrophically grown on the PEB-carbonate agar was identified as Alcaligenes. This bacterium may be useful to fix atmospheric CO2 with electrochemical energy obtained from the solar cell.
Cite this paper: B. Jeon, I. Jung and D. Park, "Enrichment and Isolation of CO2-Fixing Bacteria with Electrochemical Reducing Power as a Sole Energy Source," Journal of Environmental Protection, Vol. 3 No. 1, 2012, pp. 55-60. doi: 10.4236/jep.2012.31007.

[1]   P. Tans, “Trends in Atmospheric Carbon Dioxide,” 2011.’s_atmosphere

[2]   D. H. Park and J. G. Zeikus, “Utilization of Electrically Reduced Neutral Red by Actinobacillus succinogenes: Physiological Function of Neutral Red in Membrane- Driven Fumarate Reduction and Energy Conservation,” Journal of Bacteriology, Vol. 181, No. 7, 1999, pp. 2403- 2410.

[3]   B. Y. Jeon, S. Y. Kim, Y. K. Park and D. H. Park, “Enrichment of Hydrogenotrophic Methanogens in Coupling with Methane Production Using Electrochemical Bioreactor,” Journal of Microbiology and Biotechnology, Vol. 19, No. 12, 2009, pp. 1665-1671.

[4]   C. M. Doyle and D. J. Arp, “Regulation of H2 Oxidizing Activity and Hydrogenase Protein Levels by H2, O2, and Carbon Substrates in Alcaligenes latus,” Journal of Bacteriology, Vol. 169, No. 10, 1987, pp. 4463-4468.

[5]   U. Jahn, H. Huber, W. Eisenreich, M. Hügler and G. Fuchs, “Insight into the Autotrophic CO2 Fixation Pathway of the Archaeon Ignicoccus hospitalis: Comprehensive Analysis of the Central Carbon Metabolism,” Journal of Bacteriology, Vol. 189, No. 11, 2007, pp. 4108- 4119. doi:10.1128/JB.00047-07

[6]   L. Leadbeater and B. Bowien, “Control of Autotrophic Carbon Assimilation in Alcaligenes eutrophus by Inactivation and Reactivation of Phosphoribulokinase,” Journal of Bacteriology, Vol. 157, No. 1, 1984, pp. 95-99.

[7]   N. Ohmura, K. Sasaki, N. Matsumoto and H. Saiki, “Anaerobic Respiration Using Fe, S, and H2 in the Chemoautotrophic Bacterium Acidithiobacillus ferroxidans,” Journal of Bacteriology, Vol. 184, No. 8, 2002, pp. 2081- 2087. doi:10.1128/JB.184.8.2081-2087.2002

[8]   W. H. Ramos-Vera, I. A. Berg and G. Fuchs, “Autotrophic Carbon Dioxide Assimilation in Thermoproteales Revisited,” Journal of Bacteriology, Vol. 191, No. 13, 2009, pp. 4286-4297. doi:10.1128/JB.00145-09

[9]   S. Schouten, M. Strous, M. M. M. Kuypers, W. I. C. Rijpstra, M. Bass, C. J. Schubert, M. S. M. Jetten and J. S. S. Damsté, “Stable carbon Isotopic Fractionations Associated with Inorganic Carbon Fixation by Anaerobic Ammonium-Oxidizing Bacteria,” Applied and Environmental Microbiology, Vol. 70, No. 6, 2004, pp. 3785- 3788. doi:10.1128/AEM.70.6.3785-3788.2004

[10]   R. J. Cogdell, N. W. Isaacs, T. D. Howard, K. McLuskey, N. J. Fraser and S. M. Prince, “How Photosynthetic Bacteria Harvest Solar Energy (Mini Review),” Journal of Bacteriology, Vol. 181, No. 13, 1999, pp. 3869-3879.

[11]   F. J. Small and S. A. Ensign, “Carbon Dioxide Fixation in the Metabolism of Propylene and Propylene Oxide by Xanthobacter Strain Py2,” Journal of Bacteriology, Vol. 177, No. 21, 1995, pp. 6170-6175.

[12]   F. R. Tabita, “Molecular and Cellular Regulation of Autotrophic Carbon Dioxide Fixation in Microorganisms,” Microbiological Reviews. Vol. 52, No. 2, 1988, pp. 155- 189.

[13]   R. K. Thauer, K. Jungermann and K. Decker, “Energy Conservation in Chemotrophic Anaerobic Bacteria,” Bac- teriological Reviews. Vol. 41, No. 1, 1977, pp. 100-180.

[14]   D. H. Park, M. Laivenieks, M. V. Guettler, M. K. Jain and J. G. Zeikus, “Microbial Utilization of Electrically Reduced Neutral Red as the Sole Electron Donor for Growth and Metabolite Production,” Applied and Environmental Microbiology, Vol. 65, No.7, 1999, pp. 2912- 2917.

[15]   B. Y. Jeon, H. N. Seo, S. W. Kang and D. H. Park, “Effect of Electrochemical Redox Reaction on Biochemical Ammonium Oxidation and Chemical Nitrite Oxidation,” Journal of Microbiology and Biotechnology, Vol. 20, No. 3, 2010, pp. 485-493.

[16]   W. J. Lee and D. H. Park, “Electrochemical Activation of Nitrate Reduction to Nitrogen by Ochrobactrum sp. G3-1 Using a Noncompartmented Electrochemical Bioreactor,” Journal of Microbiology and Biotechnology, Vol. 19, No. 8, 2009, pp. 836-844.

[17]   H. S. Kang, B. K. Na and D. H. Park, “Oxidation of Butane to Butanol Coupled to Electrochemical Redox Reaction of NAD+/NADH,” Biotechnology Letters, Vol. 29, No. 8, 2007, pp. 1277-1280. doi:10.1007/s10529-007-9385-7

[18]   B. Y. Jeon and D. H. Park, “Improvement of Ethanol Production by Electrochemical Redox Combination of Zymomonas mobilis and Saccharomyces cerevisieae,” Jour- nal of Microbiology and Biotechnology, Vol. 20, No. 1, 2010, pp. 94-100.

[19]   B. Y. Jeon, T. S. Hwang and D. H. Park, “Electrochemical and Biochemical Analysis of Ethanol Fermentation of Zymomonas mobilis KCCM11336,” Journal of Microbiology and Biotechnology, Vol. 19, No. 7, 2009, pp. 666- 674.

[20]   S. M. Huse, J. A. Huber, H. G. Morrison, M. L. Sogin and M. D. Welch, “Accuracy and Quality of Massively Parallel DNA Pyrosequencing,” Genome Biology, Vol. 8, No. 7, 2007, p. R143. doi:10.1186/gb-2007-8-7-r143

[21]   A. Freter and B. Bowien, “Identification of a Novel Gene, aut, Involved in Autotrophic Growth of Alcaligenes eutrophus,” Journal of Bacteriology, Vol. 176, No. 17, 1994, pp. 5401-5408.

[22]   I. Reutz, P. Schobert and B. Bowien, “Effect of Phosphor- Glycerate Deficiency on Heterotrophic and Autotrophic Carbon Metabolism of Alcaligenes eutrophus,” Journal of Bacteriology, Vol. 151, No. 1, 1982, pp. 8-14.

[23]   C. Hogrefe, D. R?mermann and B. Friedrich, “Alcaligenes eutrophus Hydrogenase Gene (Hox),” Journal of Bacteriology, Vol. 158, No. 1, 1984, pp. 43-48.

[24]   P. Y. Hong, C. Hwang, F. Ling, G. L. Andersen, M. W. LeChevallier and W. T. Liu, “Pyrosequencing Analysis of Bacterial Biofilm Communities in Water Meters of a Drinking Water Distribution System,” Applied and Environmental Microbiology, Vol. 76, No. 16, 2010, pp. 5631- 5635. doi:10.1128/AEM.00281-10

[25]   C. Simon, A. Wiezer, A.W. Strittmatter and R. Daniel, “Phylogenetic Diversity and Metabolic Potential Revealed In A Glacier Ice Metagenome,” Applied and Environmental Microbiology, Vol. 75, No. 23, 2009, pp. 7519-7526. doi:10.1128/AEM.00946-09

[26]   I. R. Hamilton, R. J. Burris, P. W. Wilson and C. H. Wang, “Pyruvate Metabolism, Carbon Dioxide Assimilation, and Nitrogen Fixation by an Achromobacter Specie,” Journal of Bacteriology, Vol. 89, No. 3, 1965, pp. 647-653.

[27]   O. Meyer, K. Frunzke, D. Gadkari, S. Jacobitz, I. Hu- gendieck and M. Karaut, “Utilization of Carbon Monoxide by Aerobes: Recent Advances,” FEMS Microbiology Reviews, Vol. 87, No. 3-4, 1990, pp. 253-260. doi:10.1111/j.1574-6968.1990.tb04921.x

[28]   A. K. Romanova, A. V. Nozhevnikova, J. G. Leonthev and S. A. Alekseeva, “Pathways of Assimilation of Carbon Oxides in Carboxydobacteria Seliberia carboxydohydrogena and Achromobacter carboxydus,” Microbi- ology, Vol. 46, No. 5, 1977, pp. 885-889.

[29]   B. Y. Jeon, I. L. Jung and D. H. Park, “Enrichment of CO2-Fixing Bacteria in Cylinder-Type Electrochemical Bioreactor with Built-in Anode Compartment,” Journal of Microbiology and Biotechnology, Vol. 21, No. 6, 2011, pp. 590-598.