A Statistical Analysis of Intensities Estimation on the Modeling of Non-Life Insurance Claim Counting Process

References

[1] S. A. Klugman, H. H. Panjer and G. E. Willmot, “Loss Models from Data to Decisions,” 3rd Edition, John Wiley & Sons, Hoboken, 2008.

[2] M. Denuit, X. Maréchal, S. Pitrebois and J. F. Walhin, “Actuarial Modelling of Claim Counts,” John Wiley & Sons, Hoboken, 2007. doi:10.1002/9780470517420

[3] H. Bühlmann, “Introduction Report Experience Rating and Credibility,” ASTIN Bulletin, Vol. 4, No. 3, 1967, pp. 199-207.

[4] H. Bühlmann, “Credibility Procedures,” Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley, Vol. 1, 1972, pp. 515-525.

[5] T. Mikosch, “Non-Life Insurance Mathematics,” 2nd Edi- tion, Springer-Verlag, Berlin, 2009.
doi:10.1007/978-3-540-88233-6

[6] M. Matsui and T. Mikosch, “Prediction in a Poisson Cluster Model,” Journal of Applied Probability, Vol. 47, No. 2, 2010, pp. 350-366. doi:10.1239/jap/1276784896

[7] M. Morales, “On a Surplus Process under a Periodic Environment: A Simulation Approach,” North American Actuarial Journal, Vol. 8, No. 2, 2004, pp. 76-87.

[8] Y. Lu and J. Garrido, “On Double Periodic Non-Homogeneous Poisson Processes,” Bulletin of the Swiss Association of Actuaries Swiss Association of Actuaries-Bern, Bern, 2004, pp. 195-212.

[9] S. M. Ross, “Introduction to Probability Models,” 5th Edition, Academic Press, Inc., San Diego, 1993.

[10] P. Mukhopadhyay, “An Introduction to Estimating Functions,” Alpha Science International Ltd., Harrow, 2004.

[11] P. K. Andersen, O. Borgan, R. D. Gill and N. Keiding, “Statistical Models Based on Counting Processes,” Springer-Verlag, New York, 1993.

[12] P. Yip, “Estimating the Number of Error in a System Using a Martingale Approach,” IEEE Transactions on Reliability, Vol. 44, No. 2, 1995. pp. 322-326.
doi:10.1109/24.387389

[13] J. E. R. Cid and J. A. Achcar, “Bayesian Inference for Nonhomogeneous Poisson Processed in Software Reliability Models Assuming Nonmonotonic Intensity Functions,” Computational Statistics & Data Analysis, Vol. 32, No. 2, 1999, pp.147-159. doi:10.1016/S0167-9473(99)00028-6