JMP  Vol.3 No.1 , January 2012
Investigations of Ion Confinement by Direct Current Coaxial Glow Discharge
ABSTRACT
A cylindrical dc coaxial glow discharge system with inner grid cathode was designed for ion confinement, and success- fully operated with low discharge current. The plasma is formed inside the cylindrical grid cathode. The discharge cur- rentvoltage characteristic curves and Paschen curve are obtained at different gas pressures. Langmuir probes are used to determine the electron temperature and the plasma density. The electron energy distribution functions indicated that, two groups of electrons, appear in radial interval from r = 12 mm up to r = 5 mm. One group of electrons with most probable energy around 1 eV appeared from r = 5 mm up to r = 0. The electron temperature Te is increased with increasing the current and also with moving from the center toward the grid cathode. Poisson’s equation is used to calculate the plasma density at different radial positions. The plasma density measured by the single probe is around 1015 m-3. A comparison is obtained between calculated plasma density and that measured by Langmuir probes. Experimental and calculated results have the same profile.

Cite this paper
A. Abu-Hashem, M. Hassouba and M. Masoud, "Investigations of Ion Confinement by Direct Current Coaxial Glow Discharge," Journal of Modern Physics, Vol. 3 No. 1, 2012, pp. 48-56. doi: 10.4236/jmp.2012.31007.
References
[1]   P. Farnsworth, “Electrical Discharge Device for Producing Interaction between Nuclei,” US Patent No. 3258402, 1966.

[2]   K. Yamauchi, Y. Takenchi, Y. Ogino, M. Watanabe, A. Okino, Y. Sunaga and E. Hotta, “Neutron Production Rate and Plasma Characteristics of Spherically Convergent Beam Fusion,” Electrical Engineering in Japan, Vol. 135, No. 2, 2001, pp. 1-8. doi:10.1002/eej.1

[3]   H. Shao, G. Lui, Z. Yang, C. Chen, Z. Song and W. Huang, “Characterization of Modes in Coaxial Vircator,” IEEE Transactions on Plasma Science, Vol. 34, No. 1, 2006, pp. 7-13. doi:10.1109/TPS.2005.863895

[4]   A. E. Wendt, M. A. Liberman and H. Meuth, “Radial Current Distribution at a Planar Magnetron Cathode,” Journal of Vacuum Science & Technology A, Vol. 6, No. 3, 1988, pp. 1827-1831. doi:10.1116/1.575263

[5]   G. H. Miley, Y. Gu, J. M. DeMora, R. A. Stubbers, T. A. Hochberg, J. H. Nadler and R. A. Anderl, “Discharge Characteristics of the Spherical Inertial Electrostatic Confinement (IEC) Device,” IEEE Transactions on Plasma Science, Vol. 25, No. 4, 1997, pp. 733-739. doi:10.1109/27.640696

[6]   Tsv. K. Popov, M. Dimitrova and F. M. Dias, “Determination of the Electron Density in Current-Less Argon Plasma Using Langmuir Probe Measurements,” Vacuum, Vol. 76, No. 2-3, 2004, pp. 417-420. doi:10.1016/j.vacuum.2004.07.079

[7]   Y. Gu and G. H. Miley, “Experimental Study of Potential Structure in a Spherical IEC Fusion Device,” IEEE Transactions on Plasma Science, Vol. 28, No. 1, 2000, pp. 331-346. doi:10.1109/27.842929

[8]   A. Von Engel, “Electric Plasmas, Their Nature and Uses,” Taylor and Francis, London, 1983.

[9]   E. Passoth, P. Kudrna, C. Csambal, J. F. Behnke, M. Tichy and V. Helbig, “An Experimental Study of Plasma Density Determination by a Cyliderical Langmuir Probe at Different Pressures and Magnetic Fields in a Cylindrical Magnetron Discharge in Heavy Rare Gases,” Journal of Physics D: Applied Physics, Vol. 30, No. 12, 1997, pp. 1763-1777. doi:10.1088/0022-3727/30/12/013

[10]   V. I. Kolobov and L. D. Tsendin, “Analytic Model of the Cathode Region of a Short Glow Discharge in Light Gases,” Physical Review A, Vol. 46, No. 12, 1992, pp. 7837-7852. doi:10.1103/PhysRevA.46.7837

[11]   V. A. Godyak, R. B. Piejak and B. M. Alexandrovich, “Measurements of Electron Energy Distribution in Low Pressure RF Discharges,” Plasma Sources Science Technology, Vol. 1, No. 1, 1992, pp. 36-58. doi:10.1088/0963-0252/1/1/006

[12]   F. F. El-akshar, M. A. Hassouba and A. A. Graramoon, “Measurements of the Electron Energy Distribution Function in Two Different Regions of DC-Magnetron Sputtering Device,” Fizika A, Vol. 9, No. 4, 2000, pp. 177-186.

[13]   B. Koo, N. Hershkowitz and M. Sarfaty, “Langmuir Probe in Low Temperature Magnetized Plasmas: Theory and Experimental Verification,” Journal of Applied Physics, Vol. 86, No. 3, 1999, pp. 1213-1220. doi:10.1063/1.370873

[14]   J. R. Roth, “Industrial Plasma Engineering, Volume 1,” Institute of Physics Publishing, London, 1995. doi:10.1201/9781420050868

[15]   R. Hippler, S. Pfau, M. Schmidt and H. K. Schoenbach, “Low Temperature Plasma Physics,” Wiley-VCH, Berlin, 2001.

[16]   L. G. Grechko, V. I. Sugakov, O. F. Tomasevich and A. M. Fedorchenko, “Problems in Thermal Physics,” Mir Publishers, Moscow, 1977.

[17]   D. Fang and R. K. Marcus, “Use of Cylindrical Langmuir Probe for the Characterization of Charged Particle Populations in a Planar Diode Glow Discharge Device,” Spectrochimica Acta, Vol. 45 B, No. 9, 1990, pp. 1053-1074

[18]   M. B. Hopkins and W. G. Graham, “Langmuir Probe Technique for Plasma Parameter Measurement in a Medium Density Discharge,” Review of Scientific Instruments, Vol. 57, No. 9, 1986, pp. 2210-2217. doi:10.1063/1.1138684

[19]   B. M. Annaratone, M. W. Allen and J. E. Allen, “Ion Currents to Cylindrical Langmuir Probes in RF Plasmas,” Journal of Physics D: Applied Physics, Vol. 25, No. 3, 1992, pp. 417-424. doi:10.1088/0022-3727/25/3/012

[20]   I. D. Sudit and R. C. Woods, “Study of the Accuracy of Various Langmuir Probe Theories,” Journal of Applied Physics, Vol. 76, No. 8, 1994, pp. 4488-4498. doi:10.1063/1.357280

 
 
Top