ACES  Vol.2 No.1 , January 2012
Evaluation of Activation Energy and Thermodynamic Properties of Enzyme-Catalysed Transesterification Reactions
Abstract: In this study, the activation energy and thermodynamic properties of immobilized enzyme catalysed transesterification reactions were evaluated based on the enzyme substrate transition theory. The activation energy for a enzyme catalysed biodiesel production system were found to be 4.25 (kcal/mole) for monoglyceride formation, 5.58(kcal/mole) for diglyceride formation and 5.50 (kcal/mole) for methyl ester formation respectively. The rate constants were found to be 3.2 × 1010(L/mol.sec) monoglyceride, 3.47 × 109 (L/mol.sec) for diglyceride and 3.93 × 109 (L/mol.sec) for methyl ester. Based on the present work and published literatures, the activation energy of enzyme-catalysed transesterification reactions were found to be lower than the chemical-catalysed and non-catalyzed transesterification reactions. The thermodynamic properties of immobilized enzyme-catalysed transesterification reaction were found to be Gibbs free energy (ΔG = –1.02 kcal/mol), enthalpy (ΔH = 544 cal/mol) and entropy (ΔS = 5.19 cal/Kmol).
Cite this paper: R. Pogaku, J. Raman and G. Ravikumar, "Evaluation of Activation Energy and Thermodynamic Properties of Enzyme-Catalysed Transesterification Reactions," Advances in Chemical Engineering and Science, Vol. 2 No. 1, 2012, pp. 150-154. doi: 10.4236/aces.2012.21018.

[1]   M. Mittelbach, M. Worgetter, J. Pernkopf and H. Junek, “Diesel Fuel Derived from Vegetable Oils, II: Emission Tests Using Rape Oil Methyl Ester,” Energy in Agriculture, Vol. 4, 1985, pp. 207-215. doi:10.1016/0167-5826(85)90017-8

[2]   L. C. Meher, D. V. Sagar and S. N. Naik, “Technical Aspects of Biodiesel Production by Transesterification—A Review,” Renewable and Sustainable Energy Reviews, Vol. 10, No. 3, 2006, pp. 248-268. doi:10.1016/j.rser.2004.09.002

[3]   A. Demirbas, “Progress and Recent Trends in Biofuels,” Progress in Energy and Combustion Science, Vol. 33, No. 1, 2007, pp. 1-18. doi:10.1016/j.pecs.2006.06.001

[4]   H. Fukuda, A. Kondo and H. J. Noda, “Biodiesel Fuel Production by Transesterification of Oils,” Journal of Bioscience and Bioengineering, Vol. 92, No. 5, 2001, pp 405-416. doi:10.1263/jbb.92.405

[5]   K. R. Jegannathan, S. Abang, D. Poncelet, E. S. Chan and P. Ravindra, “Production of Biodiesel Using Immobilized Lipase—A Critical Review,” Critical Reviews in Biotechnology, Vol. 28, No. 4, 2008, pp. 253-264. doi:10.1080/07388550802428392

[6]   Y. Xu, W. Du and D. Liu, “Study on Acyl Migration in Immobilized Lipozyme,” Journal of Molecular Catalysis B: Enzymatic, Vol. 32, No. 5-6, 2005, pp. 241-245. doi:10.1016/j.molcatb.2004.12.013

[7]   V. Dossat, D. Combes and A. Marty, “Efficient Lipase Catalysed Production of a Lubricant and Surfactant Formulation Using a Continuous Solvent-Free Process,” Enzyme and Microbial Technology, Vol. 30, 2002, pp. 90-94. doi:10.1016/S0141-0229(01)00453-7

[8]   S. Al-Zuhair, “Production of Biodiesel: Possibilities and Challenges,” Biotechnology Progress, Vol. 21, 2005, pp 1442-1448. doi:10.1021/bp050195k

[9]   S. Al-Zuhair, Y. W. Fan and S. J. Lim, “Production of Biodiesel Using Immobilized Lipase—A Critical Review,” Biotechnology Progress, Vol. 42, 2007, pp. 951- 960.

[10]   S. F. A. Halim, A. H. Kamaruddin and W. J. N. Fernando, “Continuous Biosynthesis of Biodiesel from Waste Cooking Palm Oil in a Packed Bed Reactor: Optimization Using Response Surface Methodology (RSM) and Mass Transfer Studies,” Bioresource Technology, Vol. 100, 2009, pp. 710-716. doi:10.1016/j.biortech.2008.07.031

[11]   B. Cheirsilp and A. H. Kittikun, “Limkatanyu, Impact of Transesterification Mechanisms on the Kinetic Modeling of Biodiesel Production by Immobilized Lipase,” Biochemical Engineering Journal, Vol. 35, 2007, pp. 71-80. doi:10.1016/j.bej.2006.12.024

[12]   S. F. A Halim and A. H. Kamaruddin, “Continuous Biosynthesis of Biodiesel from Waste Cooking Palm Oil in Packed Bed Reactor,” Process Biochemistry, Vol. 43, 2008, pp. 1436-1439. doi:10.1016/j.procbio.2008.08.010

[13]   K. R. Jegannathan, E. S. Chan and P. J. Ravindra, “Design an Immobilized Lipase Enzyme for Biodiesel Production,” Journal of Molecular Catalysis B: Enzymatic, Vol. 58, 2009, pp. 78-83. doi:10.1016/j.molcatb.2008.11.009

[14]   A. Liese, K. Seelbach and C. Wandrey, “Industrial Biotransformations,” Wiley-VCH Verlag GmbH & Co., Weinheim, 2006.

[15]   A. F. Chang and Y. A. Liu, “Integrated Process Modeling and Product Design of Biodiesel Manufacturing,” Industrial & Engineering Chemistry Research, Vol. 49, No. 3, 2010, pp. 1197-1213. doi:10.1021/ie9010047

[16]   J. Joelianingsih, H. Meada, S. Hagiwara, H. Nabetani, Y. Sagara, T. H. Soerawidjaya, A. H. Tambunan and K. Abdullah, “Biodiesel Fuels from Palm Oil via the Noncatalytic Transesterification in a Bubble Column Reactor at Atmospheric Pressure: A Kinetic Study,” Renewable Energy, Vol. 33, No. 7, 2008, pp. 1629-1636. doi:10.1016/j.renene.2007.08.011