ACES  Vol.2 No.1 , January 2012
Synthesis of Capsaicin Oligosaccharides and Their Anti-Allergic Activity
——Synthesis of Capsaicin Oligosaccharides as Anti-Allergic Food-Additives
ABSTRACT
The production of β-maltooligosaccharides of capsaicin was investigated using Lactobacillus delbrueckii and cyclodextrin glucanotransferase (CGTase) as biocatalysts. The cells of L. delbrueckii glucosylated capsaicin to give its β-glucoside. The β-glucoside of capsaicin was converted into the corresponding β-maltoside and β-maltotrioside by CGTase. On the other hand, β-melibioside and β-isomaltoside of capsaicin, which were two new compounds, were synthesized by chemical glycosylation. The β-glucoside, β-maltoside, β-melibioside, and β-isomaltoside of capsaicin showed inhibitory effects on IgE antibody production.

Cite this paper
K. Shimoda, N. Kubota and M. Akagi, "Synthesis of Capsaicin Oligosaccharides and Their Anti-Allergic Activity
——Synthesis of Capsaicin Oligosaccharides as Anti-Allergic Food-Additives," Advances in Chemical Engineering and Science, Vol. 2 No. 1, 2012, pp. 45-49. doi: 10.4236/aces.2012.21006.
References
[1]   T. Kawada, K. Hagihara and K. Iwai, “Effects of Capsaicin on Lipid Metabolism in Rats Fed a High Fat Diet,” Journal of Nutrition, Vol. 116, No. 7, 1985, pp. 1272-1278.

[2]   Y. J. Surh and S. S. Lee, “Capsaicin, a Double Edged Sword: Toxicity, Metabolism, and Chemopreventative Potential (Review),” Life Sciences, Vol. 56, No. 22, 1995, pp. 1845-1855. doi:10.1016/0024-3205(95)00159-4

[3]   K. K. Park, K. S. Chun, J. I. Yook and Y. J. Surh, “Lack of Tumor Promoting Activity of Capsaicin, a Principal Pungent Ingredient of Red Peppers, in Mouse Skin Carcinoens,” Anticancer Research, Vol. 18, No. 6A, 1998, pp. 4201-4205.

[4]   Y. J. Surh, E. Lee and J. M. Lee, “Chemopreventive Properties of Some Pungent Ingredients Present in Red Pepper and Ginger,” Mutation Research, Vol. 402, No. 1, 1998, pp. 259-267. doi:10.1016/S0027-5107(97)00305-9

[5]   M. H. Ward and L. Lopez-Carrillo, “Dietary Factors and the Risk of Gastric Cancer in Mexico City,” American Journal of Epidemiology, Vol. 149, No. 10, 1999, pp. 925-932.

[6]   T. Watanabe, T. Kawada, M. Yamamoto and K. Iwai, “Capsaicin, a Pungent Principle of Hot Red Pepper, Evokes Catecholamine Secretion from the Adrenal Medulla of Anesthetized Rats,” Biochemical and Biophysical Research Communications, Vol. 142, No. 1, 1987, pp. 259-264. doi:10.1016/0006-291X(87)90479-7

[7]   E. Lewinson, E. Berman, Y. Mazur and J. Gressel, “Glucosylation of Exogenous Flavanones by Grapefruit (Citrus paradisi) Cell Cultures,” Phytochemistry, Vol. 25, 1986, pp. 2531-2535. doi:10.1016/S0031-9422(00)84502-1

[8]   M. Tabata, Y. Umetani, M. Ooya and S. Tanaka, “Glucosylation of Phenolic Compounds by Plant Cell Cultures,” Phytochemistry, Vol. 27, No. 3, 1988, pp. 809-813. doi:10.1016/0031-9422(88)84097-4

[9]   B. Upmeier, J. E. Thomzik and W. Barz, “Nicotinic Acid-N-Glucoside in Heterotrophic Parsley Cell Suspension Cultures,” Phytochemistry, Vol. 27, No. 11, 1988, pp. 3489-3493. doi:10.1016/0031-9422(88)80754-4

[10]   T. Furuya, M. Ushiyama, Y. Ashida and T. Yoshikawa, “Biotransformation of 2-Phenylpropionic Acid in Root Culture of Panax ginseng,” Phytochemistry, Vol. 28, No. 2, 1989, pp. 483-487. doi:10.1016/0031-9422(89)80036-6

[11]   M. Ushiyama, T. Asada, T. Yoshikawa and T. Furuya, “Biotransformation of Aromatic Carboxylic Acids by Root Culture of Panax ginseng,” Phytochemistry, Vol. 28, No. 11, 1989, pp. 1859-1869. doi:10.1016/S0031-9422(00)97875-0

[12]   T. Suga and T. Hirata, “Biotransformation of Exogenous Substrates by Plant Cell Cultures,” Phytochemistry, Vol. 29, No. 8, 1990, pp. 2393-2406. doi:10.1016/0031-9422(90)85155-9

[13]   K. Ishihara, H. Hamada, T. Hirata and N. Nakajima, “Biotransformation Using Plant Cultured Cells,” Journal of Molecular Catalysis B: Enzymatic, Vol. 23, No. 2-6, 2003, pp. 145-170.

[14]   K. Morohoshi, F. Shiraishi, Y. Oshima, T. Koda, N. Nakajima, J. S. Edmonds and M. Morita, “Synthesis and Es-Trogenic Activity of Bisphenol a Mono- and Di-Beta-D-Glucopyranosides, Plant Metabolites of Bisphenol A,” Environmental Toxicology and Chemistry, Vol. 22, No. 10, 2003, pp. 2275-2279. doi:10.1897/02-464

[15]   S. Kwon, K. Shimoda, H. Hamada, K. Ishihara, N. Masuoka and H. Hamada, “High Production of β-Thujaplicin Glycosides by Immobilized Plant Cells of Nicotiana tabacum,” Acta Biologica Hungarica, Vol. 59, No. 3, 2008, pp. 347-355. doi:10.1556/ABiol.59.2008.3.8

[16]   H. Katsuragi, K. Shimoda, A. Ohiro and H. Hamada, “Glycosylation of Capsaicinoids with Panax ginseng Stimulated by Salicylic Acid,” Acta Biologica Hungarica, Vol. 61, No. 4, 2010, pp. 449-456. doi:10.1556/ABiol.61.2010.4.8

[17]   K. Shimoda, H. Hamada, “Synthesis of β-Maltooligosac-charides of Glycitein and Daidzein and Their Anti-Oxidant and Anti-Allergic Activities,” Molecules, Vol. 15, No. 8, 2010, pp. 5153-5161. doi:10.3390/molecules15085153

[18]   K. Shimoda and H. Hamada, “Production of Hesperetin Glycosides by Xanthomonas campestris and Cyclodextrin Glucanotransferase and Their Anti-Allergic Activities,” Nutrients, Vol. 2, No. 2, 2010, pp. 171-180. doi:10.3390/nu2020171

[19]   K. Shimoda and H. Hamada, “Enzymatic Synthesis and Anti- Allergic Activities of Curcumin Oligosaccharides,” Biochemistry Insights, Vol. 2010, No. 3, 2010, pp. 1-5.

[20]   A. Koda, T. Miura, N. Inagaki, O. Sakamoto, A. Arimura, H. Nagai and H. Mori, “A Method for Evaluating Anti-Allergic Drugs by Simultaneously Induced Passive Cutaneous Anaphylaxis and Mediator Cutaneous Reactions,” International Archives of Allergy and Applied Immunology, Vol. 92, No. 3, 1990, pp. 209-216. doi:10.1159/000235179

 
 
Top