[1] H. Hricak, C. G. Lacey, L. G. Sandles, Y. C. F. Chang, M. L. Winkler, J. L. Stern. (1988) Invasive cervical carcinoma: Compari-son of MR imaging and surgical findings, Radiology 166: 623-631.
[2] K. Hatano, Y. Sekiya, H. Araki, et al. (1999) Evaluation of the therapeutic effect of radiotherapy on cervical cancer using magnetic resonance imaging, Int. J. Radiat. Oncol. Biol. Phys. 45: 639-644.
[3] N. A. Mayr, W. T. C. Yuh, et al. (1997) Tumor size evaluated by pelvic examination compared with 3-D MR quantitative analysis in the prediction of outcome for cervical cancer, Int J Radiat. Oncol. Biol. Phys. 39: 395-404.
[4] H. Hricak, J. Quivey, et al. (1993) Phillips T. Carcinoma of the cervix: Predictive value of clinical and magnetic resonance (MR) imaging assessment of prognostic factors, Int. J. Radiat. Oncol. Biol. Phys. 27: 791-801.
[5] N. A. Mayr, E. T. Tali, et al. (1993) Cervical cancer: Application of MR imaging in radiation therapy, Radiology 189: 601-608.
[6] M. Kass, A. Witkin, and D. Terzopoulos, (1987) “Snakes: Active contour models,” Int. J. Computer Vision, Vol. 1, No. 4, 321-331.
[7] R. Adams and L. Bischof, (1994) Seeded Region Growing, IEEE Transactions on Image processing, Vol.16, No.6, 641-47.
[8] F. Vincent, H. Chong, J. Y. Zhou, B. James, K. Khoo, J. Huang, T. K. Lim. (2004) Tongue carcinoma: Tumor volume measurement, Int. J. Radiation Oncology Biol. Phys., Vol. 59, No. 1, 59-66.
[9] Y. M. Salman, A. M. Badawi, M. A. Assal, S. M. Alian, (2005) New automatic technique for tracking brain tumor responsem , International Conference on Biological and Medical Physics, UAE.
[10] Salman Y. M., A. M. Badawi, (2005) Validation Techniques for Quantitative Brain Tumor Measurements, The 27th Annual In-ternational Conference of the IEEE Engineering in Medicine and Biology Society, China, pp. 7048-7051.
[11] S. C. Zhu and A. Yuille, (1996) Region competition: Unifying snakes, region growing and Bayer/MDL for multiband image segmentation, IEEE Transactions on Pattern Analysis and Ma-chine Intelligence, Vol. 18, No. 9, pp. 884-900.
[12] M. Sato, S. Lakare, M. Wan, and A. Kaufman, (2000) A Gradient Magnitude Based Region Growing Algorithm For Accurate Segmentation, In Proc. International Conference on Image Proc-essing, Vol.3, 448-451.
[13] S. Lakare, (2000) 3D Segmentation Techniques for Medical Volumes, Center of Visual Computer, state university of NY, Stony Brooks.
[14] Jauhiainen, Tommi, Jarvinen, et al., (1998) MR Gradient Echo Volumetric Analysis of Human Cardiac Casts: Focus on the Right Ventricle, Journal of Computer Assisted Tomography, Vol.22, No.6, 899-903.
[15] J. M. Links , L. D. Beach , B. Subramaniam, (1998) Edge com-plexity and partial volume effects, Journal of Computer Assisted Tomography, Vol. 22, No.3, 450-458.
[16] R. C. Gonzalez and R. E woods, (1992) Digital Image Process-ing, Addison-Wesley, USA.
[17] Y. L. Chang, X. Li, (1994) Adaptive Image Region-Growing, IEEE Trans. on Image Processing, Vol. 3, No. 6, 868-872.
[18] W. Schroeder, K. Martin, and B. Lorensen B, (1998) the Visuali-zation Toolkit. New Jersey, Prentice Hall.
[19] W. E Lorensen, H. E Cline, (1987) Marching cubes: a high reso-lution 3D surface construction algorithm, Computer Graphics (SIGGRAPH 87 Proceedings), Vol. 21, 1693-169.
[20] L. Ibanes, W. Schroeder, L. Ng, (2003) Insight Segmentation and Registration Toolkit (ITK) Software Guide.
[21] B. N. Joe, et al., (1999) Brain Tumor Volume Measurement: Comparison of manual and semi automated methods, Radiology, No.212, 811-816.