JBNB  Vol.3 No.1 , January 2012
Nanopores Structure in Electrospun Bacterial Cellulose
ABSTRACT
Bacterial cellulose (BC) has established to be a remarkably versatile biomaterial and can be used in wide variety of applied scientific endeavours, especially for medical devices, lately, bacterial cellulose mats are used in the treatment of skin conditions such as burns and ulcers, because of the morphology of fibrous biopolymers serving as a support for cell proliferation, its pores allow gas exchange between the organism and the environment. Moreover, the nanostructure and morphological similarities with collagen make BC attractive for cell immobilization and cell support. In this work, we obtain first electrospun bacterial cellulose mats after chemical treatment and without conductive additives. With DMA/LiClmechanism dissolution, modified bacterial cellulose was easily electrospun in chloroform/acetone solvents in comparison with BC unmodified. FTIR peaks results are consistent with proposed interactions between cellulose and DMA/LiCl solvent system.

Cite this paper
L. Maria Manzine Costa, G. Molina de Olyveira, P. Basmaji and L. Xavier Filho, "Nanopores Structure in Electrospun Bacterial Cellulose," Journal of Biomaterials and Nanobiotechnology, Vol. 3 No. 1, 2012, pp. 92-96. doi: 10.4236/jbnb.2012.31012.
References
[1]   P. Gatenholm and D. Klemm, “Bacterial Nanocellulose as a Renewable Material for Biomedical Applications,” MRS Bulletin, Vol. 35, No. 3, 2010, pp. 208-213.

[2]   W. K. Czaja, D. J. Young, M. Kawecki and R. M. Brown Jr., “The Future Prospects of Microbial Cellulose in Biomedical Applications,” Biomacromolecules, Vol. 8, No. 1, 2007, pp. 1-12. doi:10.1021/bm060620d

[3]   M. Shoda and Y. Sugano, “Recent Advances in Bacterial Cellulose Production,” Biotechnology Bioprocess Engineering, Vol. 10, No. 1, 2005, pp. 1-8. doi:10.1007/BF02931175

[4]   P. A. Richmond, “Biosynthesis and Biodegradation of Cellulose, Occurrence and Functions of Native Cellulose,” C. H. Haigler and P. J. Weimer, Eds., 1st Edition, Marcel Dekker, New York, 1991, p. 23.

[5]   C. H. Haigler, A. R. White and R. M. Brown, “Alteration of in Vivo Cellulose Ribbon Assembly by Carboxymethylcellulose and Other Cellulose Derivatives,” The Journal of Cell Biology, Vol. 94, No. 1, 1982, pp. 64-69. doi:10.1083/jcb.94.1.64

[6]   E.-L. Hult, S. Yamanaka and M. Ishihara, “Aggregation of Ribbons in Bacterial Cellulose Induced by High Pressure Incubation,” Carbohydrate Polymer, Vol. 53, No. 1, 2003, pp. 9-14. doi:10.1016/S0144-8617(02)00297-7

[7]   K. Watanabe, M. Tabuchi and M. Yasushi, “Features and Properties of Bacterial Cellulose Produced in Agitated Culture,” Cellulose, Vol. 5, No. 3, 1998, pp. 187-200. doi:10.1023/A:1009272904582

[8]   J. Andersson, J. Sanchez, K. N. Ekdahi, G. Elgue, B. Nilsson and R. Larsson, “Optimal Heparin Surface Concentration and Antithrombin Binding Capacity as Evaluated with Human Non-Anticoagulated Blood in Vitro,” Journal of Biomedical Materials Research A, Vol. 67, No. 2, 2003, pp. 458-466. doi:10.1002/jbm.a.10104

[9]   F. K. Andrade, R. Costa, L. Domingues, R. Soares and M. Gama, “Improving Bacterial Cellulose for Blood Vessel Replacement: Functionalization with a Chimeric Protein Containing a Cellulose-Binding Module and an Adhesion Peptide,” Acta Biomaterialia, Vol. 6, No. 10, 2010, pp. 4034-4041. doi:10.1016/j.actbio.2010.04.023

[10]   F. K. Andrade, S. M. Moreira, L. Domingues and F. M. Gama, “Improving the Affinity of Fibroblasts for Bacterial Cellulose Using Carbohydrate-Binding Modules Fused to RGD,” Journal of Biomedical Materials Research A, Vol. 92, No. 1, 2009, pp. 9-17.

[11]   K. Rahn, M. Diamantoglou, D. Klemm and H. Berghmans, “Homogeneous Synthesis of Cellulose p-Toluenesulfonates in N,N-Dimethylacetamide/LiCl Solvent System,” Makromolecular Chemistry, Vol. 238, No. 1, 1996, pp. 143-163. doi:10.1002/apmc.1996.052380113

[12]   S. Tungprapa, I. Jangchud and P. Supaphol, “Release Characteristics of Four Model Drugs from Drug-Loaded Electrospun Cellulose Acetate Fiber Mats,” Polymer, Vol. 48, No. 17, 2007, pp. 5030-5041. doi:10.1016/j.polymer.2007.06.061

[13]   T. Heinze, R. Dicke, A. Koschella, A. H. Kull, E.-A. Klohr and W. Koch, “Effective Preparation of Cellulose Derivatives in a New Simple Cellulose Solvent,” Macromolecular Chemistry Physics, Vol. 201, No. 6, 2000, pp. 627-631. doi:10.1002/(SICI)1521-3935(20000301)201:6<627::AID-MACP627>3.0.CO;2-Y

[14]   C. L. McCormick and D. K. Lichatowich, “Homogeneous Solution Reactions of Cellulose, Chitin, and Other Polysaccharides to Produce Controlled-Activity Pesticide Systems,” Journal Polymer Science, Part B: Polymer Letters, Vol. 17, No. 8, 1979, pp. 479-484.

[15]   C. L. McCormick and T. R. Dawsey, “Preparation of Cellulose Derivatives via Ring-Opening Reactions with Cyclic Reagents in Lithium Chloride/N,N-Dimethylacetamide,” Macromolecules, Vol. 23, No. 15, 1990, pp. 3606-3610. doi:10.1021/ma00217a011

[16]   D. H. Reneker and A. L. Yarin, “Electrospinning Jets and Polymer Nanofibers,” Polymer, Vol. 49, No. 10, 2008, pp. 2387-2425. doi:10.1016/j.polymer.2008.02.002

[17]   S. Agarwal, J. H. Wendorff and A. Greiner, “Use of Electrospinning Technique for Biomedical Applications,” Polymer, Vol. 49, No. 26, 2008, pp. 5603-5621. doi:10.1016/j.polymer.2008.09.014

[18]   C. J. Thompson, G. G. Chase, A. L. Yarin and D. H. Reneker, “Effects of Parameters on Nanofiber Diameter Determined from Electrospinning Model,” Polymer, Vol. 48, No. 23, 2007, pp. 6913-6922. doi:10.1016/j.polymer.2007.09.017

[19]   E. R. Kenawy, G. L. Bowlin, K. Mansfield, J. Layman, D. G. Simpson, E. H. Sanders and G. E. Wnek, “Release of Tetracycline Hydrochloride from Electrospun Poly(Ethylene-Co-Vinylacetate), Poly(Lactic Acid), and a Blend,” Journal of Controlled Release, Vol. 81, No. 1-2, 2002, pp. 57-64. doi:10.1016/S0168-3659(02)00041-X

[20]   X. H. Zong, K.Kim, D. F. Fang, S. F. Ran, B. S. Hsiao and B. Chu, “Structure and Process Relationship of Electrospun Bioabsorbable Nanofiber Membranes,” Polymer, Vol. 43, No. 16, 2002, pp. 4403-4412. doi:10.1016/S0032-3861(02)00275-6

[21]   Z. Ma, M. Kotaki and S. Ramakrishna, “Electrospun Cellulose Nanofiber as Affinity Membrane,” Journal of Membrane Science, Vol. 265, No. 1-2, 2005, pp. 115-123. doi:10.1016/j.memsci.2005.04.044

[22]   W. K. Son, J. H. Youk and W. H. Park, “Antimicrobial Cellulose Acetate Nanofibers Containing Silver Nanoparticles,” Carbohydrate Polymers, Vol. 65, No. 4, 2006, pp. 430-434. doi:10.1016/j.carbpol.2006.01.037

[23]   P. Taepaiboon, U. Rungsardthong and P. Supaphol, “Vitamin-Loaded Electrospun Cellulose Acetate Nanofiber Mats as Transdermal and Dermal Therapeutic Agents of Vitamin A Acid and Vitamin E,” European Journal of Pharmaceutics and Biopharmaceutics, Vol. 67, No. 2, 2007, pp. 387-397. doi:10.1016/j.ejpb.2007.03.018

[24]   B. A. Ass, G. T. Ciacco and E. Frollini, “Cellulose Acetates from Linters and Sisal: Correlation between Synthesis Conditions in DMAc/LiCl and Product Properties,” Bioresource Technology, Vol. 97, No. 14, 2006, pp. 1696-1702. doi:10.1016/j.biortech.2005.10.009

[25]   M. Bognitzki, T. Frese, M. Steinhart, A. Greiner and J. H. Wendorff, “Preparation of Fibers with Nanoscaled Morphologies: Electrospinning of Polymer Blends,” Polymer Engineering Science, Vol. 41, No. 6, 2001, pp. 982-989. doi:10.1002/pen.10799

[26]   M. Wang, J. H. Yu, D. L. Kaplan and G. C. P. Rutledge, “Production of Submicron Diameter Silk Fibers under Benign Processing Conditions by Two-Fluid Electrospinning,” Macromolecules, Vol. 39, No. 3, 2006, pp. 1102-1107. doi:10.1021/ma0517749

[27]   M. Bognitzki, W. Czado, T. Frese, A. Schaper, M. Hellwig, M. Steinhart, A. Greiner and J. H. Wendorff, “Nanostructured Fibers via Electrospinning,” Advanced Materials, Vol. 13, No. 1, 2001, pp. 70-72. doi:10.1002/1521-4095(200101)13:1<70::AID-ADMA70>3.0.CO;2-H

[28]   M. Szymańska-Chargot, J. Cybulska and A. Zdunek, “Sensing the Structural Differences in Cellulose from Apple and Bacterial Cell Wall Materials by Raman and FT-IR Spectroscopy,” Sensors, Vol. 11, No. 6, 2011, pp. 5543-5560.

[29]   D. Klemm, B. Philipp, T. Heinze, U. Heinze and W. Wagenknecht, “Comprehensive Cellulose Chemistry: Fundamentals and Analytical Methods,” 1st Edition, Wiley-VCH, Weinheim, 1998, p. 377. doi:10.1002/3527601937.indsub

 
 
Top