AJAC  Vol.2 No.8 A , December 2011
Developments in Analytical Methods for Detection of Pesticides in Environmental Samples
Abstract: The present review gives a survey of all the published methods along with their advantages and limitations. Traditional methods like thin layer chromatography, gas chromatography, liquid chromatography etc are still in use for this purpose. But some recent bio-analytical methods such as immunosensors, cell based sensors etc. have also gained equal importance. This article also overviews various electro-analytical methods and their applications as detection devices when combined with FIA and biosensors. Lastly nanoparticle based biosensors have also been discussed. The review concludes with futuristic approach to reduce the risks caused by pesticides. This scrutiny should provide concise evaluation of different techniques employed for pesticide detection in environmental samples.
Cite this paper: nullR. Bhadekar, S. Pote, V. Tale and B. Nirichan, "Developments in Analytical Methods for Detection of Pesticides in Environmental Samples," American Journal of Analytical Chemistry, Vol. 2 No. 8, 2011, pp. 1-15. doi: 10.4236/ajac.2011.228118.

[1]   “International Code of Conduct on the Distribution and Use of Pesticides,” Hundred and Twenty-Third Session of the FAO Council, November 2002.

[2]   B. K. Sharma, “Environmental Chemistry,” Goel Pub- lication House, New Delhi, India, 2006.

[3]   “The EU Water Framework Directive—Integrated River Basin Management for Europe,” European Commission Environment, 2000.

[4]   “Pesticides,” US Environmental Protection Agency, 2011.

[5]   “Pesticide Illnesses and Injury Surveillance,” Center for Disease Control and Prevention, 2011.

[6]   K. G. Harley, K. Huen, R. A. Schall, N. T. Holland, A. Bradman, D. B. Barr and B. Eskenazi, “Association of Organophosphate Pesticide Exposure and Paraoxonase with Birth Outcome in Mex-ican-American Women,” PLoS ONE, Vol. 6, No. 8, 2011.

[7]   “Potential Health Effects of Pesticide,” College of Agricultural Sciences, 2011.

[8]   W. J. Crinnion, “Chlorinated Pesticides: Threats to Health and Impor-tance of Detection,” Alternative Medicine Review, Vol. 14, No. 4, 2009, pp. 347-359.

[9]   “Illness Associated with Exposure to Methyl Bromide- Fumigated Produce—California, 2010,” Morbidity and Mortality Weekly Report, Vol. 60, No. 27, 2011, pp. 923- 926.

[10]   “Mercury Compounds,” US Environmental Protection Agency, 2000.

[11]   “Fungi-cides,” 2011.

[12]   W. Z. Azman and W. Abdullah, “General Clas-sification Pesticides: Rodenticides,”2011.

[13]   J. A. Hernández, M. V-Manzanares, M. R. G.-Ortiz, B. H.-Carlos, M. P.-Torres and P. L. L.-de-Alba, “Simulta- neous Spectrophotometric Determination of Atrazine and Dicamba in Water by Partial Least Squares Regression,” Journal of Chilean Chemical Society, Vol. 50, No. 2, 2005, pp. 461-464.

[14]   S. B. Mathew, A. K. Pillai and V. K. Gupta, “A Rapid Spectrophotometric Assay of Some Organophosphorus Pesticides in Vegetable Samples,” Electronic Journal of Envi-ronmental, Agriculture and Food Chemistry, Vol. 5, No. 6, 2006, pp. 1604-1609.

[15]   A. Navaratne and N. Priyantha, “Chemically Modified Electrodes for Detection of Pesticides,” In: M. Stoytcheva Ed., Pesticides in the Modern World—Trends in Pesticides Analysis, 2011

[16]   “Potentiometry and Redox Titrations,” Chapter II. 2011.

[17]   “Potentiometry,” 2011.

[18]   “Con-ductometry,” 2011.

[19]   J. Gallová, “Conductometry,” 2011.

[20]   S. P. Kounaves, “Voltammetric Techniques,” 2011.

[21]   “Basics of Voltametry,” 2011.

[22]   A. J. Bard and L. R. Faulkner, “Electrochemical Methods: Fundamentals and Applications,” Wiley, Hoboken, 2000.

[23]   K. Wilson and J. Walker, “Pri-ciples and Techniques of Biochemistry and Molecular Biology,” Cambridge University Press, Cambridge, 2005.

[24]   H. M. C. K. Kanatiwela and N. K. B. Adikaram, “A TLC-bioassay Based Method for Detection of Fungicide Residues on Harvested Fresh Produce,” Journal of the National Science Foundation of Sri Lanka, Vol. 37, No. 4, 2009, pp. 257-262.

[25]   S. Butz and H. J. Stan, “Screening of 265 Pesticides in Water by Thin-Layer Chromatography with Automated Multiple Development,” Analytical Chemistry, Vol. 67, No. 3, 1998, pp. 620-630.

[26]   T. Tuzimski, “Determination of Pesticides in Water Samples from the Wieprz-Krzna Canal in the Leczyńsko- W?odawskie Lake District of Southeastern Poland by Thin-Layer Chromatography with Diode Array Scanning and High-performance Column Liquid Chromatography with Diode Array Detection,” Journal of AOAC Interna- tional, Vol. 91, No. 5, 2009, pp. 1203-1209.

[27]   J. P. Lautié, V. Stankovic and G. Sinoquet, “Determina- tion of Chlormequat in Pears by High-Performance Thin Layer Chromatography and High-Performance Liqui Chro- matography with Conductimetric Detection,” Analusis, Vol. 28, No. 2, 2000, pp. 155-158. doi:10.1051/analusis:2000109

[28]   R. Akkad, “Determination of Organophosphorus and Car- bamate Insecticides in Food Samples by High-Perfor- mance Thin-Layer Chromatography Multi-Enzyme Inhi- bition Assay,” PhD Dissertation, Institute of Food Chem- istry, University of Hohenheim, Stuttgart, Germany, 2011.

[29]   Joseph Sharma, “Recent Advances in Thin-Layer Chro- matography of Pesticides,” Journal of AOAC Interna-tional, Vol. 84, No. 4, 2001, pp. 993-1000.

[30]   W. M. Niessen, P. Manini and R. Andreoli, “Matrix Effects in Quan-titative Pesticide Analysis Using Liquid Chromatography-Mass Spectrometry,” Mass Spectrometry Reviews, Vol. 25, No. 6, 2006, pp. 881-899. doi:10.1002/mas.20097

[31]   S.-H. TSeng, Y.-J. Lin, H.-F. Lee, S.-C. Su, S.-S. Chou and D.-F. Hwang, “A Multiresidue Me-thod for Determining 136 Pesticides and Metabolites in Fruits and Vegetables: Application of Macroporous Diatomaceous Earth Column,” Journal of Food and Drug Analysis, Vol. 15, No. 3, 2007, pp. 316-324.

[32]   P. L. Wylie, “Trace Level Pes-ticide Analysis by GC/MS Using Large-Volume Injection,” 2011. pdf

[33]   H. A. Moye, “Improved Microwave Emission Gas Chro- matography Detector for Pesticide Residue Analysis,” 2011.

[34]   L. V. Podhorniak, J. F. Negron and F. D. Griffith Jr., “Gas Chro-matography with Pulsed Flame Photometric Detection Multire-sidue Method for Organophosphate Pesticide and Metabolite Residues at the Parts-Per-Billion Level in Representatives Commodities of Fruits and Vegetable Crop Groups,” Journal of AOAC International, Vol. 84, No. 3, 2001, pp. 873-890.

[35]   S. Johnson, N. Saikia and A. Kumar, “Analy-sis of Pesticide Residues in Soft Drinks,” CSE Report, August, 2006.

[36]   B. Du, X.-C. L. and H. Liu, “Determination of Organo- chlorine pesticide Residues in Herbs by Capillary Elec- tropho-resis,” Life Science Journal, Vol. 4, No.1, 2007, pp. 40-42.

[37]   D. Bielawski, E. Ostrea Jr., N. Posecion Jr., M. Corrion and J. Seagraves, “Detection of Several Classes of Pesti- cides and Metabolites in Meconium by Gas Chromatog- raphy-Mass Spectrometry,” Chromatographia, Vol. 62, No. 11-12, 2005, pp. 623-629. doi:10.1365/s10337-005-0668-7

[38]   L. Alder, K. Greulich, G. Kempe and B. Vieth, “Residue Analysis of 500 High Priority Pesticides: Better by GC- MS or LC-MS/MS,” Mass Spectro-metry Reviews, Vol. 25, No. 6, 2006, pp. 838-865. doi:10.1002/mas.20091

[39]   L. Vodeb and B. Petanovs-ka-Ilievska, “HPLC-DAD with Different Types of Column for Determination of β-Cy- fluthrin in Pesticide,” Acta Chromato-graphica, Vol. 17, 2006, pp. 188-201.

[40]   P. Vinas, N. Cam-pillo, I. Lopez-Garcia, N. Aguinaga and M. Hernandez-Cordoba, “Capillary Gas Chromatography with Atomic Emission Detection for Pesticide Analysis in Soil Samples,” Journal of Agricultural and Food Che- mistry, Vol. 51, No. 3, 2003, pp. 3704-3708. doi:10.1021/jf021106b

[41]   S. Islam, M. S. Hossain, N. Nahar, M. Mosihuzzaman and M. I. R. Mamun, “Application of High Performance Liquid Chromatography to the Analysis of Pesti-cide Re- sidues in Eggplants,” Journal of Applied Sciences, Vol. 9, No. 5, 2009, pp. 973-977. doi:10.3923/jas.2009.973.977

[42]   D. R. Thevenot, K. Toth, R. A. Durst and G. S. Wilson, “Electrochemical Biosensors: Recommended Definitions and Classification,” Biosensors and Bioelectronics, Vol. 16, No. 1-2, 2001, pp. 121-131.

[43]   A. Hildebrandt, R. Bragos, S. Lacorte and J. L.Marty, “Perfor-mance of a Portable Biosensor for the Analysis of Organo-phosphorus and Carbamate Insecticides in Water and Food,” Sensors and Actuators B: Chemical, Vol. 133, No. 1, 2008, pp. 195-201. doi:10.1016/j.snb.2008.02.017

[44]   J. Tschmelak, G. Proll, J. Riedt, J. Kaiser, P. Kraemmer, L. Barzaga, J. S. Wil-kinson, P. Hua, J. P. Hole, R. Nudd, M. Jackson, R. Abuknesha, D. Barcelo, S. Rodriguez- Mozaz, M. J. Lopez de Alda, F. Sacher, J. Stien, J. Slo- bodnik, P. Oswald, H. Kozmenko, E. Korenkova, L. To- thova, Z. Krascsenits and G. Gauglitz, “Automated Water Analyser Computer Supported System (AWACSS) Part II: Intelligent, Remote-Controlled, Cost-Effective, On-line, Water Monitoring Measurement Sys-tem,” Biosensors and Bioelectronic

[45]   H. Alain, R. Jordi, B. Ramon, T. Marius and L. Silvia, “Development of a Portable Biosensor for Screening Neurotoxic Agents in Water Samples,” Talanta, Vol. 75, No. 5, pp. 1208-1213.

[46]   B. B. Dzantiev, E. V. Yazynina, A. V. Zherdev, Y. V. Plekhanova, A. N. Resheti-lov, S. C. Chang and C. J. McNeil, “Determination of the Her-bicide Chlorsulfuron by Amperometric Sensor Based on Sepa-ration-Free Bi- enzyme Immunoassay,” Sensors and Actuators B: Che- mical, Vol. 98, No. 2-3, 2004, pp. 254-261. doi:10.1016/j.snb.2003.10.021

[47]   I. Palchetti, A. Cagnini, M. Del Carlo, C. Coppi, M. Mas- cini and A. P. F. Turner, “De-termination of Acetylcholi- nesterase Pesticides in Real Samples Using a Disposable Biosensor,” Analytica Chimica Acta, Vol. 337, No. 3, 1997, pp. 315-321. doi:10.1016/S0003-2670(96)00418-7

[48]   T. T. Bachmann, B. Leca, F. Villatte, J. L. Marty, D. Fournier and R. D. Schmid, “Improved Multianalyte De- tection of Organophosphate and Carbamate with Dispos- able Multielectrode Biosensors Using Recombinant Mu- tants of Drosophila Acetylcholinesterase and Artificial neutral Network,” Biosensors and Bioelectronics, Vol. 15, No. 3-4, 2000, pp. 193-201. doi:10.1016/S0956-5663(00)00055-5

[49]   T. Montesinos, S. Perez-Munguia, F. Valdez and J. L. Marty, “Disposable Choli-nesterase Biosensor for the De- tection of Pesticides in Wa-ter-Miscible Organic Sol- vents,” Analytica Chimica Acta, Vol. 431, No. 2, 2001, pp. 231-237. doi:10.1016/S0003-2670(00)01235-6

[50]   K. A. Joshi, J. Tang, R. Haddon, J. Wang, W. Chen and A. Mulchaldani, “ A Dis-posable Biosensors for Organo- phosphorus Nerve Agents Based on Carbon Nanotubes Modified Thick Film Strip Elec-trodes,” Electroanalysis, Vol. 17, No. 1, 2005, pp. 54-58. doi:10.1002/elan.200403118

[51]   B. Prieto-Simón, M. Campàs, S. Andreescu and J.-L. Marty, “Trends in Flow-Based Biosensing Systems for Pesticide Assessment,” Sensors, Vol. 6, No. 10, 2006, pp. 1161-1186. doi:10.3390/s6101161

[52]   C. Tran-Minh, “Biosensors in Flow-Injection Systems for Bio-medical Analysis, Process and Environmental Moni- toring,” Journal of Molecular Recognition, Vol. 9, No. 5-6, 1996, pp. 658-663. doi:10.1002/(SICI)1099-1352(199634/12)9:5/6<658::AID-JMR317>3.0.CO;2-M

[53]   M. P. Marco, S. Gee and B. D. Ham-mock, “Immuno- chemical Techniques for Environmental Analysis I: Im- munosensors,” TrAC Trends in Analytical Chemistry, Vol. 14, No. 7, 1995, pp. 341-350. doi:10.1016/0165-9936(95)97062-6

[54]   B. Hock, A. Dank-wardt, K. Kramer and A. Marx, “Im- munochemical Techniques: Antibody Production for Pes- ticide Analysis,” Analytica Chimica Acta, Vol. 311, No. 3, 1995, pp. 393-405. doi:10.1016/0003-2670(95)00148-S

[55]   M. A. González-Martínez, J. Penalva, R. Puchades, A. Maquieira, B. Ballesteros, M. P. Marco and D. Barceló, “An Immunosensor for the Automatic Determination of the Antifouling Agent Ir-garol 1051 in Natural Waters,” Environmental Science & Technology, Vol. 32, No. 21, 1998, pp. 3442-3447. doi:10.1021/es980120v

[56]   E. Mallat, C. Barzen, A. Klotz, A. Brecht, G. Gauglitz and D. Barceló, “River Analyzer for Chlo-rotriazines with a Direct Optical Immunosensor,” Environmental Science & Technology, Vol. 33, No. 6, 1999, pp. 965-971. doi:10.1021/es980866t

[57]   M. A. González-Martínez, S. Mo-rais, R. Puchades, A. Maquieira, A. Abad and A. Montoya, “Monoclonal An- tibody-Based Flow-Through Immunosensor for Analysis of Carbaryl,” Analytical Chemistry, Vol. 69, No. 14, 1997, pp. 2812-2818. doi:10.1021/ac961068t

[58]   C. G. Bauer, A. V. Eremenko, E. Ehrentreich-F?rster, F. F. Bier, A. Makower, H. B. Halsall, W. R. Heineman and F. W. Scheller, “Zeptomole-Detecting Biosensor for Al- kaline Phosphatase in an Electrochemical Immunoassay for 2,4-Dichlorophenoxyacetic Acid,” Analytical Chemi- stry, Vol. 68, No. 15, 1996, pp. 2453-2458. doi:10.1021/ac960218x

[59]   R. T. Andres and R. Narayanas-wamy, “Fibre-Optic Pesti- cide Biosensor Based on Covalently Immobilized Ace- tylcholinesterase and Thymol Blue,” Talanta, Vol. 44, No. 8, 1997, pp. 1335-1352. doi:10.1016/S0039-9140(96)02071-1

[60]   R.-A Doong, H.-M. Shih and S.-H. Lee, “Sol-Gel-De- rived Array DNA Biosensor for the Detection of Poly- cyclic Aromatic Hydrocarbons in Water and Biological Samples,” Sensors and Actuators B, Vol. 111-112, No. 110, 2005, pp. 323-330.

[61]   H.-S. Lee, Y. A. Kim, Y. A. Cho and Y. T. Lee, “Oxida- tion of Organophos-phorus Pesticides for the Sensitive Detection by a Cholineste-rase-based Biosensor,” Chemo- sphere, Vol. 46, No. 4, 2002, pp. 571-576. doi:10.1016/S0045-6535(01)00005-4

[62]   J. S. Van Dyk and B. Pletschke, “Review on the Use of Enzymes for the Detection of Organochlorine, Organo- phosphate and Carbamate Pesticides in the Environment,” Vol. 82, No. 3, 2011, pp. 291-307.

[63]   J. P. Sherry, “Environmental Chemistry: The Immunoas- say Option,” Critical Reviews in Analytical Chemistry, Vol. 23, No. 4, 1992, pp. 217-300. doi:10.1080/10408349208050856

[64]   E. P. Meulenberg, W. H. Mulder and P. G. Stoks, “Im- munoassays for Pesticides,” Environmental Science Tech- nolology, Vol. 29, No. 3, 1995, pp. 553-561. doi:10.1021/es00003a001

[65]   O. A. Sadik and J. M. Van Emon, “Application of Elec- trochemical Immunosensors to Environmental Monitor- ing,” Biosensors and Bioelectronics, Vol. 11, No. 8, 1996, pp. 1-11. doi:10.1016/0956-5663(96)85936-7

[66]   A. Mulchandani, P. Mulchandani, S. Chauhan, I. Kaneva and W. Chen, “A Poten-tiometric Microbial Biosensor for Direct Determination of Or-ganophosphate Nerve Agents,” Electroanalysis, Vol. 10, No. 11, 1998, pp. 733-737. doi:10.1002/(SICI)1521-4109(199809)10:11<733::AID-ELAN733>3.0.CO;2-X

[67]   Y. Lei, P. Mulchandani, J. Wang, W. Chen, W. Chen and A. Mulchandani, “Highly Sensitive and Selective Am- perometric Microbial Biosensor for Direct De-termination of p-Nitrophenyl-Substituted Organophosphate Nerve Agents,” Environmental Science & Technology, Vol. 39, No. 22, 2005, pp. 8853-8857. doi:10.1021/es050720b

[68]   M. Priti, C. Wilfred and M. Ashok, “Microbial Biosensor for Direct Determination of Nitrophenyl-Substituted Or- ganophosphate Nerve Agents Using Genetically Modified Moraxella sp.,” Analytica Chimica Acta, Vol. 568, No. 1-2, 2006, pp. 217-221. doi:10.1016/j.aca.2005.11.063

[69]   C. Chouteau, S. Dzyadevych, C. Durrieu and J. M. Cho- velon, “A Bienzymatic Whole Cell Conductometric Bio- sensor for Heavy Metal Ions and Pesticides Detection in Water Samples,” Biosensors and Bioelectronics, Vol. 21, No. 2, 2005, pp. 273-281. doi:10.1016/j.bios.2004.09.032

[70]   A. L. Simonian, J. K. Grimsley, A. W. Flounders, J. S. Schoeniger, T. C. Cheng, J. J. DeFrank and J. R. Wild, “Enzyme-Based Biosensor for the Direct Detection of Fluorine-Containing Organophosphates,” Analytica Chi- mica Acta, Vol. 442, No. 1, 2001, pp. 15-23. doi:10.1016/S0003-2670(01)01131-X

[71]   P. Mulchandani, W. Chen and A. Mulchandani, “Flow- Injection Amperometric Enzyme Biosensor for Direct Determination of Organophos-phate Nerve Agents,” En- vironmental Science & Technology, Vol. 35, No. 12, 2001, pp. 2562-2565. doi:10.1021/es001773q

[72]   M. J. Schoening, R. Krause, K. Block, M. Musahmen, A. Mulchandani and J. Wang, “A Dual Amperometric/Po- tentiometric FIA-Based Biosensor for the Distinctive De- tection of Organophosphorus Pesticides,” Sen-sors and Ac- tuators B: Chemical, Vol. 95, No. 1-3, 2003, pp. 291- 296. doi:10.1016/S0925-4005(03)00426-X

[73]   J. Wang, R. Krause, K. Block, M. Musameh, A. Mul- chandani, P. Mul-chandani, W. Chen and M. J. Schoening, “Dual Amperometric Potentiometric Biosensor Detection System for Monitoring Organophosphorus Neurotoxins,” Analytica Chimica Acta, Vol. 469, No. 2, 2002, pp. 197- 203. doi:10.1016/S0003-2670(02)00666-9

[74]   K. Reybier, S. Zairi and N. Jaffrezic-Renault, “The Use of Polyethylenimine for Fabrication of Potentiometric Cholinesterase Biosensors,” Ta-lanta, Vol. 56, No. 6, pp. 1015-1020. doi:10.1016/S0039-9140(01)00588-4

[75]   D. Dan, H. Xi, C. Jie and Z. Aidong, “Amperometric Detection of Triazophos Pesticide Using Acetylcholi- nesterase Biosensor Based on Multiwall Carbon Nano- tube-Chitosan Matrix,” Sensors and Actuators B: Chemi- cal, Vol. 127, No. 2, pp. 531-535.

[76]   E. V. Gogol, G. A. Evtugyn, J. L. Marty, H. C. Budnikov and V. G. Winter, “Amperometric Biosensors Based on Nafion-Coated Screenprinted Electrodes for the Deter- mination of Cholines-terase Inhibitors,” Talanta, Vol. 53, No. 2, pp. 379-389. doi:10.1016/S0039-9140(00)00507-5

[77]   T. T. Bachmann, B. Leca, F. Villatte, J.-L.Marty, D. Fournier and R. D. Schmid, “Improved Multianalyte De- tection of Organophosphate and Carbamate with Disposable Multielectrode Biosensors Using Recombinant Mu- tants of Drosophila Acetylcholinesterase and Artificial Neutral Network,” Biosensors and Bioelectronics, Vol. 15, No. 3-4, pp. 193-201. doi:10.1016/S0956-5663(00)00055-5

[78]   F. Mazzei, F. Botre and C. Botre, “Acid Phosphata- se/Glucose Oxidase Based Biosensors for the Determina- tion of Pesticide,” Analytica Chimica Acta, Vol. 336, No. 1-3, 1996, pp. 67-75. doi:10.1016/S0003-2670(96)00378-9

[79]   K. Rekha, M. D. Gouda, M. S. Thakur and N. G. Karanth, “Ascorbate Oxidase Based Amperometric Biosensor for Organophosphorus Pesti-cide Monitoring,” Biosensors and Bioelectronics, Vol. 15, No. 9-10, 2000, pp. 499-502. doi:10.1016/S0956-5663(00)00077-4

[80]   Y. D. De Albu-querque and L. F. Ferreira, “Amperometric Biosensing of Car-bamate and Organophosphate Pesti- cides Utilizing Screen-printed Tyrosinase-Modified Elec- trodes,” Analytica Chimica Acta, Vol. 596, No. 2, 2007, pp. 210-221. doi:10.1016/j.aca.2007.06.013

[81]   M. T. Perez-Pita, A. J. Reviejo, F. J. Manuel-de-Villena and J. M. Pingarron, “Ampe-rometric Selective Biosens- ing of Dimethyl- and Diethyldithi-ocarbamates Based on Inhibition Processes in a Medium of Reversed Micelles,” Analytica Chimica Acta, Vol. 340, No. 1-3, 1997, pp. 89-97. doi:10.1016/S0003-2670(96)00552-1

[82]   A. Seki, F. Ortega and J. L. Marty, “Enzyme Sensor for the Detec-tion of Herbicides Inhibiting Acetolactate Syn- thase,” Analytical Letters, Vol. 29, No. 8, 1996, pp. 1259- 1271. doi:10.1080/00032719608001479

[83]   T. Noguer and J. L. Marty, “High Sensitive Bienzymic Sensor for the Detection of Dithiocarbamate Fungicides,” Analytica Chimica Acta, Vol. 347, No. 1-2, 1997, pp. 63- 70. doi:10.1016/S0003-2670(97)00127-X

[84]   J. Halamek, M. Hepel and P. Skladal, “Investigation of Highly Sensitive Pie-zoelectric Immunosensors for 2,4-Di- chlorophenoxyacetic Ac-id,” Biosensors and Bioelectron- ics, Vol. 16, No. 4-5, 2001, pp. 253-260. doi:10.1016/S0956-5663(01)00132-4

[85]   J. Pribyl, M. Hepel, J. Halámek and P. Skladal, “Development of Piezoelectric Im-munosensors for Competitive and Direct Determination of Atrazine,” Sensors and Ac- tuators B: Chemical, Vol. 91, No. 1-3, 2003, pp.333-341. doi:10.1016/S0925-4005(03)00107-2

[86]   J. Halamek, J. Pribyl, A. Makower, P. Skladal and F. W. Scheller, “Sensitive Detection of Organophosphates in River Water by Means of a Piezoelectric Biosensor,” Analytical and Bioanalytical Chemistry, Vol. 382, No. 8, 2005, pp.1904-1911. doi:10.1007/s00216-005-3260-y

[87]   G. G. Guilbault, B. Hock and R. Schmid, “A Piezoelec- tric Immunosensor for Atrazine in Drinking Water,” Bio- sensors and Bioelectronics, Vol. 7, No. 6, 1992, pp. 411- 419. doi:10.1016/0956-5663(92)85040-H

[88]   D. Erickson, S. Mandal, H. Allen, J. Yang and B. Cor- dovez, “Nanobiosensors: Optofluidic, Electrical and Me- chanical Approaches to Bio-molecular Detection at the Nanoscale,” Microfluid Nanofluidics, Vol. 4, No. 1-2, 2008, pp. 33-52. doi:10.1007/s10404-007-0198-8

[89]   J. Wang, G. Rivas, E. Cai, P. Palecek, H. Nielsen, N. Shiraishi, D. Dontha, C. Luo, M. Parrado, P. A. M. Chi- carro, F. S. Farias, D. H. Valera, M. Grant, M. Ozsoz and M. N. Flair, “DNA Electrochemical Biosensors for Envi- ronmental Monitoring. A Review,” Ana-lytica Chimica Acta, Vol. 347, No. 1-2, 1997, pp.1-8. doi:10.1016/S0003-2670(96)00598-3

[90]   P. G. He, Y. Xu and Y. Z. Fang, “A Review: Electrochemical DNA Biosensors for Sequence Recognition,” Analytical Letters, Vol. 38, No. 15, 2005, pp. 2597-2623. doi:10.1080/00032710500369794

[91]   Krystyna Pyrzynska, “Carbon Nanotubes as Sorbents in the Analysis of Pesticides,” Chemosphere, Vol. 83, No. 11, 2011, pp.1407-1413. doi:10.1016/j.chemosphere.2011.01.057

[92]   S. Olga and R. K. Jon, “An Acetylcholinesterase Enzyme Electrode Stabilized by an Electrodeposited Gold Nano- particle Layer,” Electrochemi-stry Communications, Vol. 9, No. 5, 2007, pp. 935-940. doi:10.1016/j.elecom.2006.11.021

[93]   M. Alvarez, A. Calle, J. Tamayo, J. L. M. Lechuga, A. Abad and A. Montoya, “Devel-opment of Nanomechani- cal Biosensors for Detection of the Pesticide DDT,” Bio- sensor Bioelectronics, Vol. 18, No. 5-6, 2003, pp. 649-653. doi:10.1016/S0956-5663(03)00035-6

[94]   N. Gan, X. Yang, D. Xie, Y. Wu and W. Wen, “A Disposable Organophosphorus Pesticides Enzyme Biosensor Based on Magnetic Composite Nano-Particles Modified Screen Printed Carbon Electrode,” Sensors, Vol. 10, No. 1, 2010, pp. 625-638. doi:10.3390/s100100625

[95]   I. Palchetti, S. Laschi and M. Mascini, “Electrochemical Biosensor Technology: Application to Pesticide Detec- tion,” Electrochemical and Mechanical Detectors, lateral Flow and Ligands for Biosensors, Human Press, Springer, LLC, USA, 2009, p. 115.

[96]   D. Dan, C. Shizhen, C. Jie and Z. Aidong, “Electrochemical Pesticide Sen-sitivity Test Using Acetylcholinesterase Biosensor Based on Colloidal Gold Nanoparticle Modified Sol-Gel Interface,” Ta-lanta, Vol. 74, No. 4, 2008, pp. 766-772.

[97]   D. Du, J.-W. Ding, Y. Tao and X. Chen, “Application of Chemisorp-tion/Desorption Process of Thiocholine for Pe- sticide Detection Based on Acetylcholinesterase Biosen- sor,” Sensors and Actuators B: Chemical, Vol. 134, No. 2, 2008, pp. 908-912.

[98]   A. Parikh, K. Patel, C. Patel and B. N. Patel, “Flow Injec- tion: A New Approach in Analysis,” Journal of Chemi- cal and Pharmaceutical Research, Vol. 2, No. 2, 2010, pp. 118-125.

[99]   S. Suwansa-ard, P. Kanatharana, P. Asawa-treratanakul, C. Limsakul, B. Wongkittisuksa and P. Thava-rungkul, “Semi Disposable Reactor Biosensors for Detecting Carbamate Pesticides in Water,” 2005.

[100]   D. P. Nikolelis, M. G. Simantiraki, C. G. Siontorou and K. Toth, “Flow Injection Analysis of Carbofuran in Foods Using Air Stable Lipid Film Based Acetylcholinesterase Biosensor,” Analytica Chimica Acta, Vol. 537, No. 1-2, 2005, pp. 169-177.

[101]   Y.-Y. Wei, Y. Li, Y.-H. Qu, F. Xiao, G.-Y. Shi and L.-T. Jin, “A Novel Biosensor Based on Photoelec-tro-Syner- gistic Catalysis for Flow-Injection Analysis Sys-tem/Am- perometric Detection of Organophosphorous Pesti-cides,” Analytica Chimica Acta, Vol. 643, No. 1-2, 2009, pp. 13-18. doi:10.1016/j.aca.2009.03.045

[102]   M. P. Xavier, B. Vallejo, M. D. Marazuela, M. C. Moreno-Bondi, F. Baldini and A. Falai, “Fiber Optic Monitoring of Carbamate Pesticides Using Porous Glass with Covalently Bound Chlorophenolred,” Biosensors and Bio- electronics, Vol. 14, No. 12, 2000, pp. 895-905. doi:10.1016/S0956-5663(99)00066-4

[103]   M. Franko, M. Sa-rakha, A. Cibej, A. Boskin, M. Bavcon and P. Trebse, “Photo-degradation of Pesticides and Application of Bioanalytical Methods for Their Detection,” Pure and Applied Chemistry, Vol. 77, No. 10, 2005, pp. 1727-1736. doi:10.1351/pac200577101727

[104]   R. S. Chouhan, K. V. Rana, C. R. Suri, R. K. Thampi and M. S. Thakur, “Trace-Level Detection of Atrazine Using Immuno-Chemiluminescence: Dipstick and Automated Flow Injection Analyses Formats,” Journal of AOAC International, Vol. 93, No. 1, 2010, pp. 28-35.

[105]   A. Waseem, M. Yaqoob and A. Nabi, “Photodegradation and Flow-Injection Determination of Dithiocarbamate Fungicides in Natural Water with Chemi-luminescence Detection,” Analytical Sciences, Vol. 25, No, 3, 2009, pp.395-400. doi:10.2116/analsci.25.395

[106]   H.-Y. Hu, X.-Y. Liu, F. Jiang, X. Yao and X.-C. Cui, “A Novel Chemi-luminescence Assay of Organophosphorous Pesticide Quinal-phos Residue in Vegetable with Luminol Detection,” Chemistry Central Journal, Vol. 4, No. 13, 2010, p. 13.

[107]   L. Pogacknic and M Franko, “Photothermal Bioanalytical Methods for Pesticide Toxicity Testing,” Arhiv Za Higijenu Rada I Tok-sikologiju, Vol. 54, No. 3, 2003, pp. 197-205.

[108]   J.-J. Aaron, M. Mbaye and M. D. G. Seye, “Determination of A-Cypermethrin Insecticide Residues in Senegal Waters by a Flow Injection Analysis-Photochemically Induced Fluorescence (FIA-PIF) Method,” 2011.

[109]   T. Pérez-Ruiz, C. Martínez-Lozano, V. Tomás and J. Martín, “Chemiluminescence Determination of Carbofuran and Promecarb by Flow Injection Analysis Using Two Photochemical Reactions,” Analyst, Vol. 127, No. 11, 2002, pp. 1526-1530. doi:10.1039/b207460p

[110]   A. Waseem, M. Ya-qoob and A. Nabi, “Photodegradation and Flow-Injection De-termination of Simetryn Herbicide by Luminol Chemilumines-cence Detection,” Analytical Sciences, Vol. 24, No. 8, 2008, pp. 979-983. doi:10.2116/analsci.24.979

[111]   D. J. Beale, N. A. Porter and F. A. Roddick, “A Fast Screening Method for the Presence of Atrazine and Other Triazines in Water Using Flow Injection with Chemiluminescent Detection,” Talanta, Vol. 78, No. 2, 2009, pp. 342-347.

[112]   S. C. Nanita, A. M. Pentz and F. Q. Bramble, “High- Throughput Pesticide Residue Quantitative Analysis Achi- eved by Tandem Mass Spectrometry with Automated Flow Injection,” Analytical Chemistry, Vol. 81, No. 8, 2009, pp. 3134-3142. doi:10.1021/ac900226w

[113]   X.-Q. Li, A. Ng, R. King and D. G. Durnford, “A Rapid and Simple Bioassay Method for Herbicide Detection,” Biomarker Insights, Vol. 3, 2008, pp. 287-291.

[114]   M. Amutha, J. G. Banu, T. Surulivelu and N. Gopala- krishnan, “Effect of Commonly Used Insecticides on the Growth of White Muscardine Fungus, Beauveria bassiana under Laboratory Conditions,” Journal of Biopesticides, Vol. 3, No. 1, 2010, pp. 143-146.

[115]   A. W. Garrison, J. K. Avants and R. D. Miller, “Loss of Propiconazole and Its Four Stereoisomers from the Water Phase of Two Soil-Water Slurries as Measured by Capillary Electrophoresis,” 2011.

[116]   Z. L. Xu, D. P. Zeng, J. Y. Yang, Y. D. Shen, R. C. Beier, H. T. Lei, H. Wang and Y. M. Sun, “Monoclonal Antibody-Based Broad-Specificity Immunoassay for Monitoring Organophosphorus Pesticides in Environmental Water Samples,” Journal of Environmental Monitoring, Vol. 13, No. 11, 2011, pp. 3040-3048.