Back
 ENG  Vol.2 No.4 , April 2010
The Development of Self-Balancing Controller for One-Wheeled Vehicles
Abstract: The purpose of this study is to develop a self-balancing controller (SBC) for one-wheeled vehicles (OWVs). The composition of the OWV system includes: a DSP motion card, a wheel motor, and its driver. In addition, a tilt and a gyro, for sensing the angle and angular velocity of the body slope, are used to realize self-balancing controls. OWV, a kind of unicycle robot, can be dealt with as a mobile-inverted-pendulum system for its instability. However, for its possible applications in mobile carriers or robots, it is worth being further developed. In this study, first, the OWV system model will be derived. Next, through the simulations based on the mathematical model, the analysis of system stability and controllability can be evaluated. Last, a concise and realizable method, through system pole-placement and linear quadratic regulator (LQR), will be proposed to design the SBC. The effectiveness, reliability, and feasibility of the proposal will be con- firmed through simulation studies and experimenting on a physical OWV.
Cite this paper: nullC. Huang, "The Development of Self-Balancing Controller for One-Wheeled Vehicles," Engineering, Vol. 2 No. 4, 2010, pp. 212-219. doi: 10.4236/eng.2010.24031.
References

[1]   Z. Sheng and K. Yamafuji, “Postural Stability of a Human Riding a Unicycle and Its Emulation by a Robot,” IEEE Transactions on Robotics and Automation, Vol. 13, No. 5, 1997, pp. 709-720.

[2]   Y.-S. Ha and S. Yuta, “Trajectory Tracking Control for Navigation of the Inverse Pendulum Type Self-contained Mobile Robot,” Robotics and Autonomous Systems, Vol. 17, No. 1-2, 1996, pp. 65-80.

[3]   F. Grasser, A. D’Arrigo, S. Colombi and A. C. Ruffer, “JOE: A Mobile, Inverted Pendulum,” IEEE Transactions on Industrial Electronics, Vol. 49, No. 1, 2002, pp. 107-114.

[4]   S. Jung and S. S. Kim, “Control Experiment of a Wheel- Driven Mobile Inverted Pendulum Using Neural Network,” IEEE Transactions on Control Systems Technology, Vol. 16, No. 2, 2008, pp. 297-303.

[5]   K. Pathak, J. Franch and S. K. Agrawal, “Velocity and Position Control of a Wheeled Inverted Pendulum by Partial Feedback Linearization”, IEEE Transactions on Robotics, Vol. 21, No. 3, 2005, pp. 505-513.

[6]   Y. Kim, “Dynamic Analysis of a Nonholonomic Two- Wheeled Inverted Pendulum Robot,” Journal of Intelligent and Robotic Systems, Vol. 44, No. 1, 2005, pp. 25- 46.

[7]   H. Tirmant, M. Baloh, L. Vermeiren, T. M. Guerra and M. Parent, “B2, an Alternative Two Wheeled Vehicle for an Automated Urban Transportation System,” Proceedings of IEEE Intelligent Vehicles Symposium, Vol. 2, 2002, pp. 594-603.

[8]   D. Voth, “Segway to the Future [autonomous mobile robot],” IEEE Intelligent Systems, Vol. 20, 2005, pp. 5-8.

[9]   R. O. Ambrose, R. T. Savely, S. M. Goza, P. Strawser, M. A. Diftler, I. Spain and N. Radford, “Mobile Manipulation using NASA’s Robonaut,” Proceedings of IEEE International Conference on Robotics and Automation, New Orleans, 2004, pp. 2104-2109.

[10]   K. Hofer, “Electric Vehicle on One Wheel,” IEEE Vehicle Power and Propulsion Conference, 2005, pp. 517-521.

[11]   K. Hofer, “Observer-Based Drive-Control for Self- Balanced Vehicles,” Proceedings of IEEE /IECON 32nd Annual Conference on Industrial Electronics, 2006, pp. 3951-3956.

[12]   The Electric Unicycle, Available: http://tlb.org/eunicycle.html

[13]   EMBRIO, Available: http://www.brp.com/en-CA/

[14]   C. W. Tao, J. S. Taur, T. W. Hsieh, C. L. Tsai, “Design of a Fuzzy Controller With Fuzzy Swing-Up and Parallel Distributed Pole Assignment Schemes for an Inverted Pendulum and Cart System,” IEEE Transactions on Control Systems Technology, Vol. 16, 2008, pp. 1277-1288.

[15]   R. J. Wai, M. A. Kuo, J. D. Lee, “Cascade Direct Adaptive Fuzzy Control Design for a Nonlinear Two-Axis Inverted-Pendulum Servomechanism,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, Vol. 38, 2008, pp. 439-454.

[16]   C. W. Tao and J.-S. Taur, “Flexible Complexity Reduced PID-like Fuzzy Controllers,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, Vol. 30, No. 4, 2000, pp. 510-516.

[17]   M. I. El-Hawwary, A. L. Elshafei, H. M. Emara and H. A. Abdel Fattah, “Adaptive Fuzzy Control of the Inverted Pendulum Problem,” IEEE Transactions on Control Systems Technology, Vol. 14, No. 6, 2006, pp. 1135-1144.

[18]   B. Anderson and J. Moore, “Optimal Control-Linear Quadratic Methods,” Prentice-Hall, Upper Saddle River, 1990.

[19]   Y.-P. Yang, D. S. Chuang, “Optimal Design and Control of a Wheel Motor for Electric Passenger Cars,” IEEE Transactions on Magnetics, Vol. 43, No. 1, 2007, pp. 51-61.

 
 
Top