WJCD  Vol.2 No.1 , January 2012
Paraoxonase 1 gene (Gln192-Arg) polymorphism and the risk of coronary artery disease in type 2 diabetes mellitus
ABSTRACT
Background: Paraoxonase 1 (PON1) is reported to have an antioxidant and cardioprotective properties. Recently, an association of glutamine (Gln) or (type A)/arginine (Arg) or (type B) polymorphism at position 192 of PON1 gene has been suggested with coronary artery disease (CAD) among patients with diabetes mellitus (DM). However, conflicting results have also been reported. Objectives: To investigate the relationship between PON1 gene (Gln192-Arg) poly-morphism and the presence, extent and severity of CAD in type 2 DM. Methods: The study comprised 180 patients recruited from those undergoing coronary angiography for suspected CAD, who were divided according to the presence or absence of CAD and DM into 4 groups; Group I (n = 40 patients) nondiabetic subjects without CAD, Group II (n = 45 patients) diabetic patients without CAD, Group III (n = 47 patients) non diabetic patients with CAD and Group IV (n = 48 patients) diabetic patients with CAD. PON1 (Gln192-Arg) genotype was assessed using polymerase chain reaction (PCR) followed by AlwI digestion. Results: The frequency of Gln allele (Type A) was significantly higher in group I and group II compared to group III and group IV (62.5%, 60% vs 38.3%, 31.25% respectively, p < 0.001) while the frequency of Arg allele (Type B + Type AB) was significantly higher in ischemic groups (III, IV) compared to non ischemic groups (I,II) (61.7%, 68.75% vs 37.5%, 40% respec-tively, p < 0.001). Patients with CAD and DM (group IV) have significantly higher severity score and vessel score than those with CAD only (group III) (9.7 ± 2.97, 2.44 ± 0.56 vs 6.99 ± 3.71, 1.67 ± 0.89 respectively, p < 0.001) Patients with vessel score 3 had significantly higher severity score and higher Arg allele frequency than patients with vessel score 2, the latter group had also significantly higher severity score and Arg allele frequency than patients with vessel score 1 (8.9 ± 2.79 vs 5.21 ± 2.13 and 80.49% vs 67.86%), (5.21 ± 2.13 vs 3.11 ± 0.89 and 67.86% vs 53.85%), p < 0.001 for all. In multivariate logistic regression analysis of different variables for prediction of CAD, age [OR 2.99, CI (1.11 - 10.5), P < 0.01], smoking [OR 4.13, CI (1.37 - 11.7), P < 0.001], low density lipoprotein (LDL) cholesterol > 100 mg/dL [OR 4.31, CI (1.25 - 12.5), P < 0.001], high density lipoprotein (HDL) cholesterol <40 mg/dL [OR 5.11, CI (1.79 - 16.33), P < 0.001] and PON1 192 Arg allele [OR 4.62, CI (1.67 - 13.57), P < 0.001] were significantly independent predictors of CAD. Conclusion: Arg allele of PON1 192 gene polymorphism is an independent risk factor for CAD and it is associated not only with the presence of CAD but also with its extent and severity and its impact is clearly more pronounced in diabetic patients.

Cite this paper
Elnoamany, M. , Dawood, A. , Azmy, R. and Elnajjar, M. (2012) Paraoxonase 1 gene (Gln192-Arg) polymorphism and the risk of coronary artery disease in type 2 diabetes mellitus. World Journal of Cardiovascular Diseases, 2, 29-37. doi: 10.4236/wjcd.2012.21006.
References
[1]   Navab, M., Berliner, J.A., Watson, A.D., Hama, S.Y., Territo, M.C., Lusis, A.J., Shih, D.M,, Van Lenten, B.J., Frank, J.S., Demer, L.L., Edwards, P.A. and Fogelman, A.M. (1996) The Yin and Yang of oxidation in the de- velopment of the fatty streak. A review based on the 1994 George Lyman Duff Me-morial Lecture. Arterioscler Thrombosis and Vascular Biology, 16, 831-842. doi:10.1161/01.ATV.16.7.831

[2]   Stamler, J., Vaccaro, O., Neaton, J.D. and Wentworth, D. (1993) The Multiple Risk Fac-tor Intervention Trial Re- search Group. Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care, 16, 434- 444. doi:10.2337/diacare.16.2.434

[3]   Tas, S. (1991) Genetic predisposition to coronary heart disease and gene for apolipoprotein-CIII. Lancet, 337, 113-114. doi:10.1016/0140-6736(91)90770-P

[4]   Ukkola, O., Savolai-nen, M.J., Salmela, P.I., von-Dickhoff, K. and Kesaniemi, Y.A. (1995) DNA poly-morphisms at the lipoprotein lipase gene are as-sociated with macroangiopathy in type 2 (non-insulin-dependent) diabetes mellitus. Atherosclerosis, 115, 99-105. doi:10.1016/0021-9150(94)05504-C

[5]   Steinberg, D. and Witzum, J.L. (1990) Lipoproteins and atherogenesis. The Journal of American Medical Associ- ation, 264, 3047-3052. doi:10.1001/jama.1990.03450230083034

[6]   Mackness, M.I., Arrol, S., Abbott, C. and Durrington, P.N. (1993) Protection of low-density lipoprotein against oxidative modification by high-density lipoprotein associa- ted paraoxonase. Atheroscle-rosis, 104, 129-135. doi:10.1016/0021-9150(93)90183-U

[7]   Mackness, M.I., Mackness, B., Durrington, P.N., Connelly, P.W. and Hegele, R.A. (1996) Paraoxonase: Bio- chemistry, genetics and rela-tionship to plasma lipoproteins. Current Opinion in Lipidology, 7, 69-76. doi:10.1097/00041433-199604000-00004

[8]   Humbert, R, Adler, D.A., Disteche, C.M., Hassett, C., Omiecinski, C.J. and Furlong, C.E. (1993) The molecular basis of the human serum paraoxonase activity polymorphism. Nature Genetics, 3, 73-76. doi:10.1038/ng0193-73

[9]   Hassett, C., Richter, R.J., Humbert, R., Chapline, C., Crabb, J.W., Omiecinski, C.J. and Furlong, C.E. (1991) Characterization of cDNA clones encoding rabbit and human serum paraoxonase: The mature protein retains its sig- nal sequence. Biochemistry, 30, 10141-10149. doi:10.1021/bi00106a010

[10]   Pfohl, M., Koch, M., Enderle, M., Kühn, R., Füllhase, J., Karsch, K. and H?ring, H. (1999) Paraoxonase 192 Gln/ Arg gene polymorphism, coronary artery disease, and myo- cardial infarction in type 2 diabetes. Diabetes, 48, 623- 627. doi:10.2337/diabetes.48.3.623

[11]   Odawara, M., Tachi, Y. and Yamashita, K. (1997) Para- oxonase polymor-phism (Gln192-Arg) is associated with coronary heart disease in Japanese noninsul-independent diabetes mellitus. Journal of Clinical Endocrinology Metabolism, 82, 2257-2260. doi:10.1210/jc.82.7.2257

[12]   Serrato, M. and Marian, A.J. (1995) A variant of human paraoxonase/arylesterase (HUM-PONA) gene is a risk fac- tor for coronary artery disease. Journal of Clinical Investion, 96, 3005-3008. doi:10.1172/JCI118373

[13]   Antikainen, M., Murtomaki, S., Syvanne, M., Pahlman, R., Tahvanainen, E., Jauhiainen, M., Frick and M.H., Ehnholm, C. (1996) The Gln-Arg191 poly-morphism of the human paraoxonase gene (HUMPONA) is not associated with the risk of coronary artery disease in Finns. Journal of Clinical Investigation, 98, 883-885. doi:10.1172/JCI118869

[14]   Suehiro, T., Nakauchi, Y., Ya-mamoto, M., Arii, K., Itoh, H., Hamashige, N. and Hashimoto, K. (1996) Paraoxo- nase gene polymorphism in Japanese sub-jects with coro- nary heart disease. International Journal of Cardiovascular, 57, 69-73. doi:10.1016/S0167-5273(96)02779-9

[15]   Sanghera, D.K., Saha, N., Aston, C.E. and Kamboh, M.I. (1997) Genetic poly-morphism of paraoxonase and the risk of coronary heart disease. Arterioscler Thrombosis and Vascular Biology, 17, 1067-1073. doi:10.1161/01.ATV.17.6.1067

[16]   WHO Consultation. De-finition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus. Report No 99.2. World Health Organization, Geneva, 1999.

[17]   Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus (1997). Diabetes Care, 20, 1183-1197.

[18]   American Diabetes Association (2005) Diagnosis and cla- ssification of diabetes mellitus. Diabetes Care, 28, S37- S42. doi:10.2337/diacare.28.suppl_1.S37

[19]   Schiller, N.B., Shah, P.M., Crawford, M., DeMaria, A., Devereux, R., Feigenbaum, H., Gutgesell, H., Reichek, N., Sahn, D. and Schnittger, I. (1989) Recommendations for quantitation of the left ventricle by 2-dimensional echo- cardiography. Journal of American Society Echocardiography, 2, 358-367.

[20]   Yvorchuk, K.J., Davies, R.A. and Chang, K.L. (1994) Measurement of left ventricular ejection fraction by acou- stic quantification and comparison with radionuclide angiography. American Journal of Cardiology, 74, 1052- 1056. doi:10.1016/0002-9149(94)90858-3

[21]   Reiber, J.H., Serruys, P.W., Kooijman, C.J., Wijns, W., Slager, C.J., Gerbrands, J.J., Schuurbiers, J.C., den Boer, A. and Hugenholtz, P.G. (1985) Assessment of short-, medium-, and long-term variations in arterial dimensions from computer-assisted quantitation of coronary cineangiograms. Circulation, 71, 280-288. doi:10.1161/01.CIR.71.2.280

[22]   Murk, M. (2007) Levinson: Leaning center for coronary angiography. The heart surgery forum. Cardio-Thoracic Multimedia Journal, 54, 534-539. doi:10.2337/diabetes.54.2.534

[23]   Schulze, M.B., Shai, I. and Rimm, E.B. (2005) Adipo- nectin and future coronary heart disease events among men with type 2 diabetes. Diabetes, 54, 534-539.

[24]   Wolk, R., Berger, P., Lennon, R.J., Brilakis, E.S. and Somers, V.K. (2003) Body mass index: A risk factor for unstable angina and myocardial infarction in patients with an-giographically confirmed coronary artery disease. Circulation, 108, 2206-2211.

[25]   Friedewald, W.T., Levy, R.I. and Fre-drickson, D.S. (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clinical Chemical, 18, 499-502.

[26]   Miller, S.A., Dykes, D.D. and Polesky, H.F. (1989) A simple salt-out procedure for extracting DNA from human nucleated cells. Nucleic Acids Research, 16, 1215. doi:10.1093/nar/16.3.1215

[27]   Adkin, S., Gan, K.N., Mody, M. and La Du, B.N. (1993) Molecular basis for the polymorphic forms of human serum paraoinase/arylesterase: Glutamine or arginin at position 192, for the respective A or B allozymes. American Journal of Human Genetics, 52, 598-608.

[28]   Saunders, B.D. and Trapp, R.G. (1994) Basic and clinical biostatistics. 1994. 2nd Edition, Appleton & Lange, Norwalk.

[29]   Maritim, A.C., Sanders, R.A. and Watkins, J.B. (2003) Diabetes, oxidative stress, and antioxidants: A review. Journal of Biochemical Toxicology, 17, 24-38. doi:10.1002/jbt.10058

[30]   Flekac, M., ?krha, J., Zidkova, K., Lacinova, Z., Hilgertova, J. (2008) Paraoxonase 1 Gene poly-mor-phisms and enzyme activities in diabetes mellitus. Physio-logical Research, 57, 717-726.

[31]   Ruiz, J., Blanche, H., James, R.W., Garin, M.C., Vaisse, C., Charpentier, G., Cohen, N., Morabia, A., Passa and P., Froguel, P. (1995) Gln-Arg192 polymorphism of parao- xonase and coronary heart disease in type 2 diabetes. Lancet, 346, 869-872. doi:10.1016/S0140-6736(95)92709-3

[32]   Jalilian, A., Javadi, E., Doosti, M., Amiri, P., Mohaghegh, A. and Shariati, B. (2008) Association between the severity of angiographic coronary artery disease and parao- xonase 1 promoter gene polymorphism T (–107) in iranian population. Acta Medica Iranica, 46, 197-202.

[33]   James, R.W., Leviev, I., Ruiz, J., Passa, P., Froguel, P. and Garin, M.C. (2000) Promoter polymorphism T(–107)C of the paraoxonase PON1 gene is a risk factor for coronary heart disease in type 2 diabetic patients. Diabetes, 49, 1390- 1393. doi:10.2337/diabetes.49.8.1390

[34]   Lavi, S., Mcconnell, J., Lavi, R., Barsness, G., Rihal, C., Novak, G., Lerman, L. and Lerman, A. (2008) Association between the paraoxonase-1 192Q > R allelic variant and coronary endothelial dysfunction in patients with early coronary artery disease. Mayo Clinical Proceeding, 83, 158-164. doi:10.4065/83.2.158

[35]   Schwartz, C.J., Valente, A.J., Sprague, E.A., Kelley, J.L., Cayatte, A.J. and Rozek, M.M. (1992) Pathogenesis of the atherosclerotic lesion: Implications for diabetes mellitus. Circulation, 15, 1156-1167.

[36]   Lyons, T.J., Li, W., Wells-Knecht, M.C. and Jokl, R. (1994) Toxicity of mildly modified low density lipopro- teins to cultured retinal capillary endothelial cells and pe- ricytes. Diabetes, 43, 1090-1095. doi:10.2337/diabetes.43.9.1090

[37]   Watanabe, J., Wohltmann, H.J., Klein, R.L., Colwell, J.A. and Lopes-Virella, M.F. (1988) Enhancement of platelet aggregation by low-density lipoproteins from IDDM patients. Diabetes, 37, 1652-1657. doi:10.2337/diabetes.37.12.1652

[38]   Kobayashi, K., Watanabe, J., Umeda, F. and Nawata, H. (1995) Glycation accelerates the oxidation of low density lipoprotein by copper ions. Endocrine Journal, 42, 461- 465. doi:10.1507/endocrj.42.461

[39]   Church, D.F. and Pryor, W.A. (1985) The free radical chemistry of cigarette smoke and toxicological impli- cations. Environmental Health Perspectives, 64, 111-126.

[40]   Chow, C.K., Thacker, R.R., Changcit, C., Bridges, R.B., Rehm, S.R., Humble, J. and Turbe, K.J. (1986) Lower levels of vitamin C and carotenes in plasma of cigarette smokers. Journal of the American College Nutrition, 5, 305-312.

[41]   Princen, H.M.G., van Poppel, G., Vogelezang, C., Buytenhek, R. and Kok, F.J. (1992) Supplementation with vitamin E but not b-carotene in vivo protects low density lipoprotein from lipid peroxidation in vitro: Effect of cigarette smoking. Arteriosclerosis Thrombosis, 12, 554-562. doi:10.1161/01.ATV.12.5.554

[42]   Scheffler, E., Wiest, E., Woehrle, J., Otto, I., Schulz, I., Huber, L., Ziegler, R. and Dresel, H.A. (1992) Smoking influences the atherogenic potential of low-density lipoprotein. Clinical & Investigative Medicine, 70, 263-268.

[43]   Nishio, E. and Watanabe, Y. (1997) Cigarette smoke ex- tract inhibits plasma paraoxonase activity by modification of the enzyme’s free thiols. Biochemical and Bi-ophysical Research Communications, 236, 289-293.

[44]   Efrat, M. and Aviram, M. (2010) Paraoxonase 1 interactions with HDL, antioxidants and macrophages regulate atherogenesis—A protective role for HDL phospholipids. Advances in Experi-mental Medicine and Biology, 660, 153-166. doi:10.1007/978-1-60761-350-3_14

[45]   Barter, P. (2005) The role of HDL-cholesterol in preven- ting atherosclerotic disease. European Heart Journal, 7, F4-F8. doi:10.1093/eurheartj/sui036

 
 
Top