AJMB  Vol.2 No.1 , January 2012
Comparative gene expression analysis in stems of Dolichos purpureus and Arabidopsis thaliana
Abstract: The outermost layer epidermis of a plant stem plays an important role in protection and environment-sensing. The mechanisms of sensing and response to the environment through the stem epidermis remain unclear. Here we report enriched expression of genes involved in stress resistance and signal transduction functions in the stem epidermis of both D. purpureus and A. thaliana by cDNA cloning and QPCR in D. purpureus and by analysis using dataset from a genome-wide comparison with cDNAs differentially expressed between the epidermis and inner parts of top and base stem in A. thaliana. Among 188 cDNAs from the stem epidermis of D. purpureus, 13% and 17% were related to signal transduction and defense respectively. Most of them were up-regulated more in the stem epidermis than the inner stem, as well as in A. thaliana. Also, the distribution of the numbers and specificities of up-regulated genes related to signal transduction and regulatory networks in the epidermis and inner stem revealed the possibility of positional differences in regulation. The results revealed the importance of the epidermis in signal transduction and plant defence.
Cite this paper: Yan, H. , Wang, X. , Chu, Y. and Dai, K. (2012) Comparative gene expression analysis in stems of Dolichos purpureus and Arabidopsis thaliana. American Journal of Molecular Biology, 2, 72-84. doi: 10.4236/ajmb.2012.21008.

[1]   Costa, S. and Dolan, L. (2003) Epidermal patterning genes are active during embryogenesis in Arabidopsis. Development, 130, 2893-2901. doi:10.1242/dev.00493

[2]   Tominaga, R., Iwata, M., Okada, K. and Wada, T. (2007) Functional analysis of the epidermal-specific MYB genes CAPRICE and WEREWOLF in Arabidopsis. Plant Cell, 19, 2264-2277. doi:10.1105/tpc.106.045732

[3]   Wang, S.C., Hubbard, L., Chang, Y., Guo, J.J., Schiefelbein, J. and Chen, J.G. (2008) Comprehensive analysis of single-repeat R3 MYB proteins in epidermal cell patterning and their transcriptional regulation in Arabidopsis. BMC Plant Biology, 8, 81.

[4]   Chlyah, H. and Van, M.T. (1975) Distribution pattern of cell division centers on the epidermis of stem segments of torenia fournieri during de novo bud formation. Plant Physiology, 56, 28-33. doi:10.1104/pp.56.1.28

[5]   Kunst, L. and Samuels, A.L. (2003) Biosynthesis and secretion of plant cuticular wax. Progress in Lipid Research, 42, 51-80. doi:10.1016/S0163-7827(02)00045-0

[6]   Pollard, M., Beisson, F., Li, Y.H. and Ohlrogge, J.B. (2008) Building lipid barriers: Biosynthesis of cutin and suberin. Trends in Plant Science, 13, 236-246. doi:10.1016/j.tplants.2008.03.003

[7]   Murata, J., Roepke, J., Gordon, H. and De Luca, V. (2008) The leaf epidermome of Catharanthus roseus reveals its biochemical specialization. Plant Cell, 20, 524-542. doi:10.1105/tpc.107.056630

[8]   Haley, A., Russell, A.J., Wood, N., Allan, A.C., Knight, M., Campbell, A.K. and Trewavas, A.J. (1995) Effects of mechanical signaling on plant-cell cytosolic calcium. Proceeding of the National Academy of Science of the United States of America, 92, 4124-4128.

[9]   Shabala, S. and Newman, I.I. (1999) Light-induced changes in hydrogen, calcium, potassium, and chloride ion fluxes and concentrations from the mesophyll and epidermal tissues of bean leaves. Understanding the ionic basis of light-induced bioelectrogenesis. Plant Physiology, 119, 1115-1124. doi:10.1104/pp.119.3.1115

[10]   Hardham, A.R., Takemoto, D. and White, R.G. (2008) Rapid and dynamic subcellular reorganization following mechanical stimulation of Arabidopsis epidermal cells mimics responses to fungal and oomycete attack. Bmc Plant Biology, 8, 63.

[11]   Clark, A.M., Verbeke, J.A. and Bohnert, H.J. (1992) Epidermis-specific gene expression in Pachyphytum. Plant Cell, 4, 1189-1198.

[12]   Kryvych, S., Nikiforova, V., Herzog, M., Perazza, D. and Fisahn, J. (2008) Gene expression profiling of the different stages of Arabidopsis thaliana trichome development on the single cell level. Plant Physiology and Biochemistry, 46, 160-173. doi:10.1016/j.plaphy.2007.11.001

[13]   Negri, A.S., Prinsi, B., Rossoni, M., Failla, O., Scienza, A., Cocucci, M. and Espen, L. (2008) Proteome changes in the skin of the grape cultivar Barbera among different stages of ripening. BMC Genomics, 9, 378.

[14]   Panikashvili, D., Savaldi-Goldstein, S., Mandel, T., Yifhar, T., Franke, R.B., Hofer, R., Schreiber, L., Chory, J.and Aharoni, A. (2007) The Arabidopsis DESPERADO/ AtWBC11 transporter is required for cutin and wax secretion. Plant Physiology, 145, 1345-1360. doi:10.1104/pp.107.105676

[15]   Suh, M.C., Samuels, A.L., Jetter, R., Kunst, L., Pollard, M., Ohlrogge, J. and Beisson, F. (2005) Cuticular lipid composition, surface structure, and gene expression in Arabidopsis stem epidermis. Plant Physiology, 139, 1649-1665. doi:10.1104/pp.105.070805

[16]   Sambrook, J. F.E. and Maniatis, T. (1989) Molecular cloning: A laboratory manual. Cold Spring Harbor Press, Cold Spring Harbor.

[17]   Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J.H., Zhang, Z., Miller, W. and Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25, 3389-3402. doi:10.1093/nar/25.17.3389

[18]   Clark, A.M. and Bohnert, H.J. (1993) Epidermis-specific transcripts. Nucleotide sequence of a full-length cDNA of EPI12, encoding a putative lipid transfer protein. Plant Physiology, 103, 677-678.

[19]   Thomas, R., Fang, X., Ranathunge, K., Anderson, T.R., Peterson, C.A. and Bernards, M.A. (2007) Soybean root suberin: Anatomical distribution, chemical composition, and relationship to partial resistance to Phytophthora sojae. Plant Physiology, 144, 299-311. doi:10.1104/pp.106.091090

[20]   Ramsay, N.A. and Glover, B.J. (2005) MYB-bHLH- WD40 protein complex and the evolution of cellular diversity. Trends Plant Science, 10, 63-70. doi:10.1016/j.tplants.2004.12.011

[21]   Rowland, O., Ludwig, A.A., Merrick, C.J., Baillieul, F., Tracy, F.E., Durrant, W.E., Fritz-Laylin, L., Nekrasov, V., Sjolander, K., Yoshioka, H. and Jones, J.D.G. (2005) Functional analysis of Avr9/Cf-9 rapidly elicited genes identifies a protein kinase, ACIK1, that is essential for full Cf-9-dependent disease resistance in tomato. Plant Cell, 17, 295-310. doi:10.1105/tpc.104.026013

[22]   Taji, T., Seki, M., Yamaguchi-Shinozaki, K., Kamada, H., Giraudat, J. and Shinozaki, K. (1999) Mapping of 25 drought-inducible genes, RD and ERD, in Arabidopsis thaliana. Plant Cell Physiology, 40, 119-123.

[23]   Liu, J., Elmore, J.M., Fuglsang, A.T., Palmgren, M.G., Staskawicz, B.J. and Coaker, G. (2009) RIN4 functions with plasma membrane H+-ATPases to regulate stomatal apertures during pathogen attack. PLoS Biology, 7, e1000139. doi:10.1371/journal.pbio.1000139

[24]   Lisso, J., Steinhauser, D., Altmann, T., Kopka, J. and Mussig, C. (2005) Identification of brassinosteroidrelated genes by means of transcript co-response analyses. Nucleic Acids Research, 33, 2685-2696. doi:10.1093/nar/gki566

[25]   Huang, D.Q., Wu, W.R., Abrams, S.R. and Cutler, A.J. (2008) The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors. Journal of Experimental Botany, 59, 2991-3007. doi:10.1093/jxb/ern155

[26]   Balaji, S. and Aravind, L. (2007) The RAGNYA fold: A novel fold with multiple topological variants found in functionally diverse nucleic acid, nucleotide and peptide- binding proteins. Nucleic Acids Research, 35, 5658-5671. doi:10.1093/nar/gkm558

[27]   Kreps, J.A., Wu, Y.J., Chang, H.S., Zhu, T., Wang, X., and Harper, J.F. (2002) Transcriptome changes for arabidopsis in response to salt, osmotic, and cold stress. Plant Physiology, 130, 2129-2141. doi:10.1104/pp.008532

[28]   Lee, B.H., Kapoor, A., Zhu, J.H. and Zhu, J.K. (2006) STABILIZED1, a stress-upregulated nuclear protein, is required for pre-mRNA splicing, mRNA turnover, and stress tolerance in Arabidopsis. Plant Cell, 18, 1736-1749. doi:10.1105/tpc.106.042184

[29]   Guan, Y. and Nothnagel, E.A. (2004) Binding of arabinogalactan proteins by Yariv phenylglycoside triggers wound-like responses in Arabidopsis cell cultures. Plant Physiology, 135, 1346-1366. doi:10.1104/pp.104.039370

[30]   Hiraoka, Y., Ueda, H. and Sugimoto, Y. (2009) Molecular responses of Lotus japonicus to parasitism by the compatible species Orobanche aegyptiaca and the incompatible species Striga hermonthica. Journal of Experimental Botany, 60, 641-650. doi:10.1093/jxb/ern316

[31]   Veljanovski, V., Vanderbeld, B., Knowles, V.L., Snedden, WA. and Plaxton, W.C. (2006) Biochemical and molecular characterization of AtPAP26, a vacuolar purple acid phosphatase up-regulated in phosphate-deprived Arabidopsis suspension cells and seedlings. Plant Physiology, 142, 1282-1293. doi:10.1104/pp.106.087171

[32]   Li, D. and Wang, D. (2003) Responses of putative purple acid phosphatase genes in Arabidopsis thaliana (AtPAPs) to phosphorus starvation. Life Science Research, 7, 65-69.

[33]   Kaida, R., Hayashi, T. and Kaneko, T.S. (2008) Purple acid phosphatase in the walls of tobacco cells. Phytochemistry, 69, 2546-2551. doi:10.1016/j.phytochem.2008.07.008

[34]   Irshad, M., Canut, H., Borderies, G., Pont-Lezica, R. and Jamet, E. (2008) A new picture of cell wall protein dynamics in elongating cells of Arabidopsis thaliana: Confirmed actors and newcomers. BMC Plant Biology, 8, 94.

[35]   Rizhsky, L., Liang, H.J., Shuman, J., Shulaev, V., Davletova, S. and Mittler, R. (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiology, 134, 1683-1696. doi:10.1104/pp.103.033431

[36]   Bhalerao, R., Keskitalo, J., Sterky, F., Erlandsson, R., Bjorkbacka, H., Birve, S.J., Karlsson, J., Gardestrom, P., Gustafsson, P., Lundeberg, J. and Jansson, S. (2003) Gene expression in autumn leaves. Plant Physiology, 131, 430-442. doi:10.1104/pp.012732

[37]   Liao, H., Wong, F.L., Phang, T.H., Cheung, M.Y., Li, W.Y., Shao, G., Yan, X. and Lam, H.M. (2003) GmPAP3, a novel purple acid phosphatase-like gene in soybean induced by NaCl stress but not phosphorus deficiency. Gene, 318, 103-111. doi:10.1016/S0378-1119(03)00764-9

[38]   Ponstein, A.S., Bres-Vloemans, S.A., Sela-Buurlage, M.B., van den Elzen, P.J., Melchers, L.S. and Cornelissen, B.J. (1994) A novel pathogen- and wound-inducible tobacco (Nicotiana tabacum) protein with antifungal activity. Plant Physiology, 104, 109-118. doi:10.1104/pp.104.1.109

[39]   Wu, C.T., Leubner-Metzger, G., Meins, F., Jr. and Bradford, K.J. (2001) Class I beta-1,3-glucanase and chitinase are expressed in the micropylar endosperm of tomato seeds prior to radicle emergence. Plant Physiology, 126, 1299-1313. doi:10.1104/pp.126.3.1299

[40]   Wu, C.T. and Bradford, K.J. (2003) Class I chitinase and beta-1,3-glucanase are differentially regulated by wounding, methyl jasmonate, ethylene, and gibberellin in tomato seeds and leaves. Plant Physiology, 133, 263-273. doi:10.1104/pp.103.024687

[41]   Hietala, A.M., Kvaalen, H., Schmidt, A., Johnk, N., Solheim, H. and Fossdal, C.G. (2004) Temporal and spatial profiles of chitinase expression by norway spruce in response to bark colonization by Heterobasidion annosum. Applied and Environmental Microbiology, 70, 3948-3953. doi:10.1128/AEM.70.7.3948-3953.2004

[42]   Taira, T., Ohdomari, A., Nakama, N., Shimoji, M. and Ishihara, M. (2005) Characterization and antifungal activity of gazyumaru (Ficus microcarpa) latex chitinases: Both the chitin-binding and the antifungal activities of class I chitinase are reinforced with increasing ionic strength. Bioscience Biotechnology and Biochemistry, 69, 811-818. doi:10.1271/bbb.69.811

[43]   Bishop, J.G., Dean, A.M. and Mitchell-Olds, T. (2000) Rapid evolution in plant chitinases: Molecular targets of selection in plant-pathogen coevolution. Proceeding of the National Academy of Science of the United States of America, 97, 5322-5327.

[44]   Li, L.G., Cheng, X.F., Leshkevich, J., Umezawa, T., Harding, S.A. and Chiang, V.L. (2001) The last step of syringyl monolignol biosynthesis in angiosperms is regulated by a novel gene encoding sinapyl alcohol dehydrogenase. Plant Cell, 13, 1567-1585.

[45]   Schmid, J., Doerner, P.W., Clouse, S.D., Dixon, R. A. and Lamb, C.J. (1990) Developmental and environmental regulation of a bean chalcone synthase promoter in transgenic tobacco. Plant Cell, 2, 619-631.

[46]   Fuglevand, G., Jackson, J.A. and Jenkins, G.I. (1996) UV-B, UV-A, and blue light signal transduction pathways interact synergistically to regulate chalcone synthase gene expression in Arabidopsis. Plant Cell, 8, 2347-2357.

[47]   Jacobs, M. and Rubery, P.H. (1988) Naturally-Occurring Auxin Transport Regulators. Science, 241, 346-349. doi:10.1126/science.241.4863.346

[48]   Koes, R.E., Quattrocchio, F. and Mol, J.N.M. (1994) The Flavonoid Biosynthetic-Pathway in Plants—Function and Evolution. Bioessays, 16, 123-132. doi:10.1002/bies.950160209

[49]   Shirley, B.W. (1996) Flavonoid biosynthesis: “New” functions for an “old” pathway. Trends in Plant Science, 1, 377-382. doi:10.1016/1360-1385(96)10040-6

[50]   Subramanian, S., Stacey, G. and Yu, O. (2006) Endogenous isoflavones are essential for the establishment of symbiosis between soybean and Bradyrhizobium japonicum. Plant Journal, 48, 261-273. doi:10.1111/j.1365-313X.2006.02874.x

[51]   Sallaud, C., Elturk, J., Breda, C., Buffard, D., Dekozak, I., Esnault, R. and Kondorosi, A. (1995) Differential Expression of Cdna Coding for Chalcone Reductase, a Key Enzyme of the 5-Deoxyflavonoid Pathway, under Various Stress Conditions in Medicago-Sativa. Plant Science, 109, 179-190. doi:10.1016/0168-9452(95)04179-X

[52]   Joung, J.Y., Kasthuri, G.M., Park, J.Y., Kang, W.J., Kim, H.S., Yoon, B.S., Joung, H. and Jeon, J.H. (2003) An overexpression of chalcone reductase of Pueraria montana var. lobata alters biosynthesis of anthocyanin and 5’-deoxyflavonoids in transgenic tobacco. Biochemical and Biophysical Research Communications, 303, 326-331. doi:10.1016/S0006-291X(03)00344-9

[53]   Petrucco, S., Bolchi, A., Foroni, C., Percudani, R., Rossi, G.L. and Ottonello, S. (1996) A maize gene encoding an NADPH binding enzyme highly homologous to isoflavone reductases is activated in response to sulfur starvation. Plant Cell, 8, 69-80.

[54]   Baldridge, G.D., O’Neill, N.R. and Samac, D.A. (1998) Alfalfa (Medicago sativa L.) resistance to the root-lesion nematode, Pratylenchus penetrans: Defense-response gene mRNA and isoflavonoid phytoalexin levels in roots. Plant Molecular Biology, 38, 999-1010. doi:10.1023/A:1006182908528

[55]   Lers, A., Burd, S., Lomaniec, E., Droby, S. and Chalutz, E. (1998) The expression of a grapefruit gene encoding an isoflavone reductase-like protein is induced in response to UV irradiation. Plant Molecular Biology, 36, 847-856. doi:10.1023/A:1005996515602

[56]   Kim, S.T., Cho, K.S., Kim, S.G., Kang, S.Y. and Kang, K.Y. (2003) A rice isoflavone reductase-like gene, OsIRL, is induced by rice blast fungal elicitor. Molecular Cells, 16, 224-231.

[57]   Friml, J., Wisniewska, J., Benkova, E., Mendgen, K. and Palme, K. (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature, 415, 806-809. doi:10.1038/415806a

[58]   Savaldi-Goldstein, S. and Chory, J. (2008) Growth coordination and the shoot epidermis. Current Opinion in Plant Biology, 11, 42-48.

[59]   Chattopadhyay, S., Ang, L.H., Puente, P., Deng, X.W. and Wei, N. (1998) Arabidopsis bZIP protein HY5 directly interacts with light-responsive promoters in mediating light control of gene expression. Plant Cell, 10, 673-683.

[60]   Franklin, K.A., Davis, S.J., Stoddart, W.M., Vierstra, R.D. and Whitelam, G.C. (2003) Mutant analyses define multiple roles for phytochrome C in Arabidopsis photomorphogenesis. Plant Cell, 15, 1981-1989. doi:10.1105/tpc.015164

[61]   Halliday, K.J. and Whitelam, G.C. (2003) Changes in photoperiod or temperature alter the functional relationships between phytochromes and reveal roles for phyD and phyE. Plant Physiology, 131, 1913-1920. doi:10.1104/pp.102.018135

[62]   Sharrock, R.A. and Clack, T. (2002) Patterns of expression and normalized levels of the five Arabidopsis phytochromes. Plant Physiology, 130, 442-456. doi:10.1104/pp.005389

[63]   Parks, B.M. and Spalding, E.P. (1999) Sequential and coordinated action of phytochromes A and B during Arabidopsis stem growth revealed by kinetic analysis. Proceeding of the National Academy of Science of the United States of America, 96, 14142-14146.

[64]   Lariguet, P., Schepens, I., Hodgson, D., Pedmale, U.V., Trevisan, M., Kami, C., de Carbonnel, M., Alonso, J.M., Ecker, J.R., Liscum, E. and Fankhauser, C. (2006) PHYTOCHROME KINASE SUBSTRATE 1 is a phototropin 1 binding protein required for phototropism. Proceeding of the National Academy of Science of the United States of America, 103, 10134-10139. doi:10.1073/pnas.0603799103

[65]   Sakamoto, K. and Briggs, W.R. (2002) Cellular and subcellular localization of phototropin 1. Plant Cell, 14, 1723-1735. doi:10.1105/tpc.003293

[66]   Motchoulski, A. and Liscum, E. (1999) Arabidopsis NPH3: A NPH1 photoreceptor-interacting protein essential for phototropism. Science, 286, 961-964. doi:10.1126/science.286.5441.961

[67]   Haga, K., Takano, M, Neumann, R. and Iino, M. (2005) The rice coleoptile phototropism gene encoding an ortholog of Arabidopsis NPH3 is required for phototropism of coleoptiles and lateral translocation of auxin. Plant Cell, 17, 103-115. doi:10.1105/tpc.104.028357

[68]   Cheng, Y., Qin, G., Dai, X. and Zhao, Y. (2007) NPY1, a BTB-NPH3-like protein, plays a critical role in auxin-regulated organogenesis in Arabidopsis. Proceeding of the National Academy of Science of the United States of America, 104, 18825-18829. doi:10.1073/pnas.0708506104

[69]   Efremova, N., Perbal, M.C., Yephremov, A., Hofmann, W.A., Saedler, H. and Schwarz-Sommer, Z. (2001) Epidermal control of floral organ identity by class B homeotic genes in Antirrhinum and Arabidopsis. Development, 128, 2661-2671.

[70]   Hung, C.Y., Lin, Y., Zhang, M., Pollock, S., Marks, M.D. and Schiefelbein, J. (1998) A common position-dependent mechanism controls cell-type patterning and GLABRA2 regulation in the root and hypocotyl epidermis of Arabidopsis. Plant Physiology, 117, 73-84. doi:10.1104/pp.117.1.73

[71]   Gordon, S.P., Heisler, M.G., Reddy, G.V., Ohno, C., Das, P. and Meyerowitz, E.M. (2007) Pattern formation during de novo assembly of the Arabidopsis shoot meristem. Development, 134, 3539-3548. doi:10.1242/dev.010298