[1] Costa, S. and Dolan, L. (2003) Epidermal patterning genes are active during embryogenesis in Arabidopsis. Development, 130, 2893-2901. doi:10.1242/dev.00493
[2] Tominaga, R., Iwata, M., Okada, K. and Wada, T. (2007) Functional analysis of the epidermal-specific MYB genes CAPRICE and WEREWOLF in Arabidopsis. Plant Cell, 19, 2264-2277. doi:10.1105/tpc.106.045732
[3] Wang, S.C., Hubbard, L., Chang, Y., Guo, J.J., Schiefelbein, J. and Chen, J.G. (2008) Comprehensive analysis of single-repeat R3 MYB proteins in epidermal cell patterning and their transcriptional regulation in Arabidopsis. BMC Plant Biology, 8, 81.
[4] Chlyah, H. and Van, M.T. (1975) Distribution pattern of cell division centers on the epidermis of stem segments of torenia fournieri during de novo bud formation. Plant Physiology, 56, 28-33. doi:10.1104/pp.56.1.28
[5] Kunst, L. and Samuels, A.L. (2003) Biosynthesis and secretion of plant cuticular wax. Progress in Lipid Research, 42, 51-80. doi:10.1016/S0163-7827(02)00045-0
[6] Pollard, M., Beisson, F., Li, Y.H. and Ohlrogge, J.B. (2008) Building lipid barriers: Biosynthesis of cutin and suberin. Trends in Plant Science, 13, 236-246. doi:10.1016/j.tplants.2008.03.003
[7] Murata, J., Roepke, J., Gordon, H. and De Luca, V. (2008) The leaf epidermome of Catharanthus roseus reveals its biochemical specialization. Plant Cell, 20, 524-542. doi:10.1105/tpc.107.056630
[8] Haley, A., Russell, A.J., Wood, N., Allan, A.C., Knight, M., Campbell, A.K. and Trewavas, A.J. (1995) Effects of mechanical signaling on plant-cell cytosolic calcium. Proceeding of the National Academy of Science of the United States of America, 92, 4124-4128.
[9] Shabala, S. and Newman, I.I. (1999) Light-induced changes in hydrogen, calcium, potassium, and chloride ion fluxes and concentrations from the mesophyll and epidermal tissues of bean leaves. Understanding the ionic basis of light-induced bioelectrogenesis. Plant Physiology, 119, 1115-1124. doi:10.1104/pp.119.3.1115
[10] Hardham, A.R., Takemoto, D. and White, R.G. (2008) Rapid and dynamic subcellular reorganization following mechanical stimulation of Arabidopsis epidermal cells mimics responses to fungal and oomycete attack. Bmc Plant Biology, 8, 63.
[11] Clark, A.M., Verbeke, J.A. and Bohnert, H.J. (1992) Epidermis-specific gene expression in Pachyphytum. Plant Cell, 4, 1189-1198.
[12] Kryvych, S., Nikiforova, V., Herzog, M., Perazza, D. and Fisahn, J. (2008) Gene expression profiling of the different stages of Arabidopsis thaliana trichome development on the single cell level. Plant Physiology and Biochemistry, 46, 160-173. doi:10.1016/j.plaphy.2007.11.001
[13] Negri, A.S., Prinsi, B., Rossoni, M., Failla, O., Scienza, A., Cocucci, M. and Espen, L. (2008) Proteome changes in the skin of the grape cultivar Barbera among different stages of ripening. BMC Genomics, 9, 378.
[14] Panikashvili, D., Savaldi-Goldstein, S., Mandel, T., Yifhar, T., Franke, R.B., Hofer, R., Schreiber, L., Chory, J.and Aharoni, A. (2007) The Arabidopsis DESPERADO/ AtWBC11 transporter is required for cutin and wax secretion. Plant Physiology, 145, 1345-1360. doi:10.1104/pp.107.105676
[15] Suh, M.C., Samuels, A.L., Jetter, R., Kunst, L., Pollard, M., Ohlrogge, J. and Beisson, F. (2005) Cuticular lipid composition, surface structure, and gene expression in Arabidopsis stem epidermis. Plant Physiology, 139, 1649-1665. doi:10.1104/pp.105.070805
[16] Sambrook, J. F.E. and Maniatis, T. (1989) Molecular cloning: A laboratory manual. Cold Spring Harbor Press, Cold Spring Harbor.
[17] Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J.H., Zhang, Z., Miller, W. and Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25, 3389-3402. doi:10.1093/nar/25.17.3389
[18] Clark, A.M. and Bohnert, H.J. (1993) Epidermis-specific transcripts. Nucleotide sequence of a full-length cDNA of EPI12, encoding a putative lipid transfer protein. Plant Physiology, 103, 677-678.
[19] Thomas, R., Fang, X., Ranathunge, K., Anderson, T.R., Peterson, C.A. and Bernards, M.A. (2007) Soybean root suberin: Anatomical distribution, chemical composition, and relationship to partial resistance to Phytophthora sojae. Plant Physiology, 144, 299-311. doi:10.1104/pp.106.091090
[20] Ramsay, N.A. and Glover, B.J. (2005) MYB-bHLH- WD40 protein complex and the evolution of cellular diversity. Trends Plant Science, 10, 63-70. doi:10.1016/j.tplants.2004.12.011
[21] Rowland, O., Ludwig, A.A., Merrick, C.J., Baillieul, F., Tracy, F.E., Durrant, W.E., Fritz-Laylin, L., Nekrasov, V., Sjolander, K., Yoshioka, H. and Jones, J.D.G. (2005) Functional analysis of Avr9/Cf-9 rapidly elicited genes identifies a protein kinase, ACIK1, that is essential for full Cf-9-dependent disease resistance in tomato. Plant Cell, 17, 295-310. doi:10.1105/tpc.104.026013
[22] Taji, T., Seki, M., Yamaguchi-Shinozaki, K., Kamada, H., Giraudat, J. and Shinozaki, K. (1999) Mapping of 25 drought-inducible genes, RD and ERD, in Arabidopsis thaliana. Plant Cell Physiology, 40, 119-123.
[23] Liu, J., Elmore, J.M., Fuglsang, A.T., Palmgren, M.G., Staskawicz, B.J. and Coaker, G. (2009) RIN4 functions with plasma membrane H+-ATPases to regulate stomatal apertures during pathogen attack. PLoS Biology, 7, e1000139. doi:10.1371/journal.pbio.1000139
[24] Lisso, J., Steinhauser, D., Altmann, T., Kopka, J. and Mussig, C. (2005) Identification of brassinosteroidrelated genes by means of transcript co-response analyses. Nucleic Acids Research, 33, 2685-2696. doi:10.1093/nar/gki566
[25] Huang, D.Q., Wu, W.R., Abrams, S.R. and Cutler, A.J. (2008) The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors. Journal of Experimental Botany, 59, 2991-3007. doi:10.1093/jxb/ern155
[26] Balaji, S. and Aravind, L. (2007) The RAGNYA fold: A novel fold with multiple topological variants found in functionally diverse nucleic acid, nucleotide and peptide- binding proteins. Nucleic Acids Research, 35, 5658-5671. doi:10.1093/nar/gkm558
[27] Kreps, J.A., Wu, Y.J., Chang, H.S., Zhu, T., Wang, X., and Harper, J.F. (2002) Transcriptome changes for arabidopsis in response to salt, osmotic, and cold stress. Plant Physiology, 130, 2129-2141. doi:10.1104/pp.008532
[28] Lee, B.H., Kapoor, A., Zhu, J.H. and Zhu, J.K. (2006) STABILIZED1, a stress-upregulated nuclear protein, is required for pre-mRNA splicing, mRNA turnover, and stress tolerance in Arabidopsis. Plant Cell, 18, 1736-1749. doi:10.1105/tpc.106.042184
[29] Guan, Y. and Nothnagel, E.A. (2004) Binding of arabinogalactan proteins by Yariv phenylglycoside triggers wound-like responses in Arabidopsis cell cultures. Plant Physiology, 135, 1346-1366. doi:10.1104/pp.104.039370
[30] Hiraoka, Y., Ueda, H. and Sugimoto, Y. (2009) Molecular responses of Lotus japonicus to parasitism by the compatible species Orobanche aegyptiaca and the incompatible species Striga hermonthica. Journal of Experimental Botany, 60, 641-650. doi:10.1093/jxb/ern316
[31] Veljanovski, V., Vanderbeld, B., Knowles, V.L., Snedden, WA. and Plaxton, W.C. (2006) Biochemical and molecular characterization of AtPAP26, a vacuolar purple acid phosphatase up-regulated in phosphate-deprived Arabidopsis suspension cells and seedlings. Plant Physiology, 142, 1282-1293. doi:10.1104/pp.106.087171
[32] Li, D. and Wang, D. (2003) Responses of putative purple acid phosphatase genes in Arabidopsis thaliana (AtPAPs) to phosphorus starvation. Life Science Research, 7, 65-69.
[33] Kaida, R., Hayashi, T. and Kaneko, T.S. (2008) Purple acid phosphatase in the walls of tobacco cells. Phytochemistry, 69, 2546-2551. doi:10.1016/j.phytochem.2008.07.008
[34] Irshad, M., Canut, H., Borderies, G., Pont-Lezica, R. and Jamet, E. (2008) A new picture of cell wall protein dynamics in elongating cells of Arabidopsis thaliana: Confirmed actors and newcomers. BMC Plant Biology, 8, 94.
[35] Rizhsky, L., Liang, H.J., Shuman, J., Shulaev, V., Davletova, S. and Mittler, R. (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiology, 134, 1683-1696. doi:10.1104/pp.103.033431
[36] Bhalerao, R., Keskitalo, J., Sterky, F., Erlandsson, R., Bjorkbacka, H., Birve, S.J., Karlsson, J., Gardestrom, P., Gustafsson, P., Lundeberg, J. and Jansson, S. (2003) Gene expression in autumn leaves. Plant Physiology, 131, 430-442. doi:10.1104/pp.012732
[37] Liao, H., Wong, F.L., Phang, T.H., Cheung, M.Y., Li, W.Y., Shao, G., Yan, X. and Lam, H.M. (2003) GmPAP3, a novel purple acid phosphatase-like gene in soybean induced by NaCl stress but not phosphorus deficiency. Gene, 318, 103-111. doi:10.1016/S0378-1119(03)00764-9
[38] Ponstein, A.S., Bres-Vloemans, S.A., Sela-Buurlage, M.B., van den Elzen, P.J., Melchers, L.S. and Cornelissen, B.J. (1994) A novel pathogen- and wound-inducible tobacco (Nicotiana tabacum) protein with antifungal activity. Plant Physiology, 104, 109-118. doi:10.1104/pp.104.1.109
[39] Wu, C.T., Leubner-Metzger, G., Meins, F., Jr. and Bradford, K.J. (2001) Class I beta-1,3-glucanase and chitinase are expressed in the micropylar endosperm of tomato seeds prior to radicle emergence. Plant Physiology, 126, 1299-1313. doi:10.1104/pp.126.3.1299
[40] Wu, C.T. and Bradford, K.J. (2003) Class I chitinase and beta-1,3-glucanase are differentially regulated by wounding, methyl jasmonate, ethylene, and gibberellin in tomato seeds and leaves. Plant Physiology, 133, 263-273. doi:10.1104/pp.103.024687
[41] Hietala, A.M., Kvaalen, H., Schmidt, A., Johnk, N., Solheim, H. and Fossdal, C.G. (2004) Temporal and spatial profiles of chitinase expression by norway spruce in response to bark colonization by Heterobasidion annosum. Applied and Environmental Microbiology, 70, 3948-3953. doi:10.1128/AEM.70.7.3948-3953.2004
[42] Taira, T., Ohdomari, A., Nakama, N., Shimoji, M. and Ishihara, M. (2005) Characterization and antifungal activity of gazyumaru (Ficus microcarpa) latex chitinases: Both the chitin-binding and the antifungal activities of class I chitinase are reinforced with increasing ionic strength. Bioscience Biotechnology and Biochemistry, 69, 811-818. doi:10.1271/bbb.69.811
[43] Bishop, J.G., Dean, A.M. and Mitchell-Olds, T. (2000) Rapid evolution in plant chitinases: Molecular targets of selection in plant-pathogen coevolution. Proceeding of the National Academy of Science of the United States of America, 97, 5322-5327.
[44] Li, L.G., Cheng, X.F., Leshkevich, J., Umezawa, T., Harding, S.A. and Chiang, V.L. (2001) The last step of syringyl monolignol biosynthesis in angiosperms is regulated by a novel gene encoding sinapyl alcohol dehydrogenase. Plant Cell, 13, 1567-1585.
[45] Schmid, J., Doerner, P.W., Clouse, S.D., Dixon, R. A. and Lamb, C.J. (1990) Developmental and environmental regulation of a bean chalcone synthase promoter in transgenic tobacco. Plant Cell, 2, 619-631.
[46] Fuglevand, G., Jackson, J.A. and Jenkins, G.I. (1996) UV-B, UV-A, and blue light signal transduction pathways interact synergistically to regulate chalcone synthase gene expression in Arabidopsis. Plant Cell, 8, 2347-2357.
[47] Jacobs, M. and Rubery, P.H. (1988) Naturally-Occurring Auxin Transport Regulators. Science, 241, 346-349. doi:10.1126/science.241.4863.346
[48] Koes, R.E., Quattrocchio, F. and Mol, J.N.M. (1994) The Flavonoid Biosynthetic-Pathway in Plants—Function and Evolution. Bioessays, 16, 123-132. doi:10.1002/bies.950160209
[49] Shirley, B.W. (1996) Flavonoid biosynthesis: “New” functions for an “old” pathway. Trends in Plant Science, 1, 377-382. doi:10.1016/1360-1385(96)10040-6
[50] Subramanian, S., Stacey, G. and Yu, O. (2006) Endogenous isoflavones are essential for the establishment of symbiosis between soybean and Bradyrhizobium japonicum. Plant Journal, 48, 261-273. doi:10.1111/j.1365-313X.2006.02874.x
[51] Sallaud, C., Elturk, J., Breda, C., Buffard, D., Dekozak, I., Esnault, R. and Kondorosi, A. (1995) Differential Expression of Cdna Coding for Chalcone Reductase, a Key Enzyme of the 5-Deoxyflavonoid Pathway, under Various Stress Conditions in Medicago-Sativa. Plant Science, 109, 179-190. doi:10.1016/0168-9452(95)04179-X
[52] Joung, J.Y., Kasthuri, G.M., Park, J.Y., Kang, W.J., Kim, H.S., Yoon, B.S., Joung, H. and Jeon, J.H. (2003) An overexpression of chalcone reductase of Pueraria montana var. lobata alters biosynthesis of anthocyanin and 5’-deoxyflavonoids in transgenic tobacco. Biochemical and Biophysical Research Communications, 303, 326-331. doi:10.1016/S0006-291X(03)00344-9
[53] Petrucco, S., Bolchi, A., Foroni, C., Percudani, R., Rossi, G.L. and Ottonello, S. (1996) A maize gene encoding an NADPH binding enzyme highly homologous to isoflavone reductases is activated in response to sulfur starvation. Plant Cell, 8, 69-80.
[54] Baldridge, G.D., O’Neill, N.R. and Samac, D.A. (1998) Alfalfa (Medicago sativa L.) resistance to the root-lesion nematode, Pratylenchus penetrans: Defense-response gene mRNA and isoflavonoid phytoalexin levels in roots. Plant Molecular Biology, 38, 999-1010. doi:10.1023/A:1006182908528
[55] Lers, A., Burd, S., Lomaniec, E., Droby, S. and Chalutz, E. (1998) The expression of a grapefruit gene encoding an isoflavone reductase-like protein is induced in response to UV irradiation. Plant Molecular Biology, 36, 847-856. doi:10.1023/A:1005996515602
[56] Kim, S.T., Cho, K.S., Kim, S.G., Kang, S.Y. and Kang, K.Y. (2003) A rice isoflavone reductase-like gene, OsIRL, is induced by rice blast fungal elicitor. Molecular Cells, 16, 224-231.
[57] Friml, J., Wisniewska, J., Benkova, E., Mendgen, K. and Palme, K. (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature, 415, 806-809. doi:10.1038/415806a
[58] Savaldi-Goldstein, S. and Chory, J. (2008) Growth coordination and the shoot epidermis. Current Opinion in Plant Biology, 11, 42-48.
[59] Chattopadhyay, S., Ang, L.H., Puente, P., Deng, X.W. and Wei, N. (1998) Arabidopsis bZIP protein HY5 directly interacts with light-responsive promoters in mediating light control of gene expression. Plant Cell, 10, 673-683.
[60] Franklin, K.A., Davis, S.J., Stoddart, W.M., Vierstra, R.D. and Whitelam, G.C. (2003) Mutant analyses define multiple roles for phytochrome C in Arabidopsis photomorphogenesis. Plant Cell, 15, 1981-1989. doi:10.1105/tpc.015164
[61] Halliday, K.J. and Whitelam, G.C. (2003) Changes in photoperiod or temperature alter the functional relationships between phytochromes and reveal roles for phyD and phyE. Plant Physiology, 131, 1913-1920. doi:10.1104/pp.102.018135
[62] Sharrock, R.A. and Clack, T. (2002) Patterns of expression and normalized levels of the five Arabidopsis phytochromes. Plant Physiology, 130, 442-456. doi:10.1104/pp.005389
[63] Parks, B.M. and Spalding, E.P. (1999) Sequential and coordinated action of phytochromes A and B during Arabidopsis stem growth revealed by kinetic analysis. Proceeding of the National Academy of Science of the United States of America, 96, 14142-14146.
[64] Lariguet, P., Schepens, I., Hodgson, D., Pedmale, U.V., Trevisan, M., Kami, C., de Carbonnel, M., Alonso, J.M., Ecker, J.R., Liscum, E. and Fankhauser, C. (2006) PHYTOCHROME KINASE SUBSTRATE 1 is a phototropin 1 binding protein required for phototropism. Proceeding of the National Academy of Science of the United States of America, 103, 10134-10139. doi:10.1073/pnas.0603799103
[65] Sakamoto, K. and Briggs, W.R. (2002) Cellular and subcellular localization of phototropin 1. Plant Cell, 14, 1723-1735. doi:10.1105/tpc.003293
[66] Motchoulski, A. and Liscum, E. (1999) Arabidopsis NPH3: A NPH1 photoreceptor-interacting protein essential for phototropism. Science, 286, 961-964. doi:10.1126/science.286.5441.961
[67] Haga, K., Takano, M, Neumann, R. and Iino, M. (2005) The rice coleoptile phototropism gene encoding an ortholog of Arabidopsis NPH3 is required for phototropism of coleoptiles and lateral translocation of auxin. Plant Cell, 17, 103-115. doi:10.1105/tpc.104.028357
[68] Cheng, Y., Qin, G., Dai, X. and Zhao, Y. (2007) NPY1, a BTB-NPH3-like protein, plays a critical role in auxin-regulated organogenesis in Arabidopsis. Proceeding of the National Academy of Science of the United States of America, 104, 18825-18829. doi:10.1073/pnas.0708506104
[69] Efremova, N., Perbal, M.C., Yephremov, A., Hofmann, W.A., Saedler, H. and Schwarz-Sommer, Z. (2001) Epidermal control of floral organ identity by class B homeotic genes in Antirrhinum and Arabidopsis. Development, 128, 2661-2671.
[70] Hung, C.Y., Lin, Y., Zhang, M., Pollock, S., Marks, M.D. and Schiefelbein, J. (1998) A common position-dependent mechanism controls cell-type patterning and GLABRA2 regulation in the root and hypocotyl epidermis of Arabidopsis. Plant Physiology, 117, 73-84. doi:10.1104/pp.117.1.73
[71] Gordon, S.P., Heisler, M.G., Reddy, G.V., Ohno, C., Das, P. and Meyerowitz, E.M. (2007) Pattern formation during de novo assembly of the Arabidopsis shoot meristem. Development, 134, 3539-3548. doi:10.1242/dev.010298