OJAppS  Vol.1 No.1 , December 2011
Ultrasonic Wave Propagation in Californium Monopnictides
Abstract: In this paper, we have investigated the temperature dependence of the ultrasonic parameters like ultrasonic velocities and Grüneisen parameters in californium monopnictides CfY (Y: N, As and Sb) for longitudinal and shear waves along <100>, <110> and <111> crystallographic directions in the temperature range 100–500K. For the same evaluation the second- and third- order elastic constants have also been computed for these monopnictides using Coulomb and Born-Mayer potential upto second nearest neighborhood. The mechanical properties and stability of CfN is best, because of its high valued elastic constants. Ultrasonic velocity is found to be highest for CfAs along all chosen directions, so CfAs will be most suitable compound for wave propagation. The obtained results of present investigation are discussed in along with identified thermophysical properties.
Cite this paper: nullR. Kumar, D. Singh and G. Mishra, "Ultrasonic Wave Propagation in Californium Monopnictides," Open Journal of Applied Sciences, Vol. 1 No. 1, 2011, pp. 1-7. doi: 10.4236/ojapps.2011.11001.

[1]   G.G. Saharabudhe and S.D. Lambade, “Study of elastic and acoustic non-linearities in solids at room temperature”, Journal of Physics and Chemistry of Solids, Vol. 59, No. 5, 1998, pp. 789-808. doi:10.1016/S0022-3697(97)00116-9

[2]   A.K. Pandey, B.K. Pandey and Rahul, “Theoretical prediction of Grüneisen parameters for bulk metallic glasses”, Journal of Alloys and Compounds, Vol. 509, No.11, 2011, pp. 4191-4197. doi:10.1016/j.jallcom.2010.11.120

[3]   V.P. Singh and M.P. Hemkar, “Dynamical theory for Grüneisen parameters in fcc metals”, Journal of Physics F and Metal Physics, Vol. 7, No. 5, 1977, pp. 761-769. doi:10.1088/0305-4608/7/5/008

[4]   D.N. Joharpurkar and M.A. Breazeale, “Nonlinearity parameters, nonlinearity constant and frequency dependence of ultrasonic attenuation in GaAs”, Journal of Applied Physics, Vol. 67, No. 1, 1999, pp. 76-80. doi:10.1063/1.345208

[5]   D. Singh, D.K. Pandey, D.K. Singh and R.R. Yadav, “Propagation of ultrasonic waves in neptunium monochalcogenides”, Applied Acoustics, Vol.72, No. 10, 2011, pp. 737-741. doi:10.1016/j.apacoust.2011.04.002

[6]   R.G. Haire and R.D. Gand Baybarz, “Crystal structure and melting point of metal”, Journal of Inorganic and Nuclear Chemistry, Vol. 36, No. 6, 1974, pp. 1295-1302. doi:10.1016/0022-1902(74)80067-9

[7]   D. Damien, R.G. Haire and J.R. Peterson, “Cf-249 monoarsenide and monoantimonide”, Inorganic and Nuclear Chemistry Letters, Vol. 16, No. 9-12, 1980, pp.537-41. doi:10.1016/0020-1650(80)80006-7

[8]   S.E. Nave, J.R. Moore, M. T. Spaar, R.G. Haire and P.G. Huray, “Magnetic susceptibility of Cf oxides”, Physica B, Vol. 130, No. 1-3, 1985, pp. 225-227. doi:10.1016/0378-4363(85)90225-6

[9]   S.E. Nave, J. R Moore, R.G Haire, J.R Peterson, D.A. Damien and P.G Huray, “Magnetic susceptibility of CfN , CfAs and CfSb” , Journal of Less Common Metals, Vol. 121, 1986, pp. 319-24.

[10]   M. Born and J. E. Mayer, “Zur Gittertheorie der Ionenkristalle”, Zeitschrift für Physik, Vol. 75, No. 1-21931, pp. 1-18. doi: 10.1007/BF01340511

[11]   K. Brugger, “Thermodynamic definition of higher elastic coefficients”, Physical Review, Vol. 133, No. 6A, 1964, pp. A1611-A1612. doi/10.1103/PhysRev.133.A1611

[12]   G. Leibfried and H. Haln, “Zur temperaturabhangigkeit der elastischen konstantaaen von alhalihalogenidkristallen”, Zeitschrift für Physik, Vol. 150, 1958, pp. 497-525.

[13]   G. Leibfried and W. Ludwig, “Theory of anharmonic effect in crystal”, Solid State Physics XII, in: F. Seitz, D. Turnbull (Eds.). Academic Press, New York 1961, pp.276-444.

[14]   S. Mori and Y. Hiki, “Calculations of third order elastic constants and forth order elastic constants of alkali halides crystals”, Journal of Physical Society of Japan, Vol. 45, 1978, pp. 1449-1456.doi: 10.1143/JPSJ.45.1449

[15]   R.W.F. Wyckoff, Crystal Structure, Interscience Publication, New York, 1963.

[16]   D. Singh, Rajkumar, D.K. Pandey, “Temperature and orientation dependence of ultrasonic parameters in americium monopnictides”, Advances in Materials Physics and Chemistry, Vol.1, No. 2, 2011, pp. 31-38. doi:10.4236/ampc.2011.12006

[17]   R. Nava and J. Romero, “Ultrasonic Grüneisen parameters for non conducting cubic crystals”, Journal of Acoustical Society of America, Vol. 64, No. 2, 1978, pp. 529-532. doi: 10.1121/1.382004

[18]   K. Brugger, “Generalized Grüneisen parameters in anisotropic Debye model”, Physical Review, Vol. 137, No. 6A, 1965, pp. A1826-A1827. doi: 10.1103/PhysRev.137.A1826

[19]   S.D. Lambade, G.G. Sahasrabudhe and S. Rajagopalan, “Temperature dependence of acoustic attenuation in silicon”, Physical Review B, Vol. 51, No. 22, 1995, pp. 15861-158866.

[20]   W.P. Mason, “Effect of impurities and phonon processes on the ultrasonic attenuation in germanium crystal quartz and silicon”, Physical Acoustics IIIB, Academic Press, New York, 1965, pp. 237-285.

[21]   M.P. Tosi, Cohesion of ionic solids in Born model, in: Solid State Physics, Vol.16, F. Seitz, D. Turnbull (Eds.), (Academic Press, New York, 1964) pp. 1-120.

[22]   D. Singh, S. Tripathi, D.K. Pandey, A.K. Gupta, D.K. Singh and J. Kumar, “Ultrasonic wave propagation in semimetallic single crystals”, Modern Physics Letters B, Vol. 25, No. 31, 2011, pp. 2377-2390. doi: 10.1142/S0217984911027686

[23]   R.R. Yadav, A.K. Tiwari and D. Singh, “Effect of pressure on ultrasonic attenuation in Ce-monopnictides at low temperature”, Journal of Materials Science, vol. 40, No. 19, 2005, pp. 5319-5321. doi:10.1007/s10853-005-4397-y

[24]   D. Singh, R.R. Yadav and A.K. Tiwari, “Ultrasonic attenuation in semiconductors”, Indian Journal of Pure and Applied Physics, Vol. 40, No. 12, 2002, pp. 845-849.

[25]   D. Singh, D.K. Pandey and P.K. Yadawa, “Ultrasonic wave propagation in rare-earth monochalcogenides”, Central European Journal of Physics, Vol. 7, No. 1, 2009, pp. 198-205.doi: 10.2478/s11534-008-0130-1

[26]   R.R. Yadav and D. Singh, “Effect of thermal conductivity on ultrasonic attenuation in praseodymium monochalcogenides”, Acoustical Physics, Vol. 49, No. 5, 2005, pp. 595-604. doi: 10.1134/1.1608987