The Analytical and Numerical Solutions of Differential Equations Describing of an Inclined Cable Subjected to External and Parametric Excitation Forces

References

[1] H. N. Arafat and A. H. Nayfeh, “Non-Linear Responses of Suspended Cables to Primary Resonance Excitations,” Journal of Sound and Vibration, Vol. 266, No. 2, 2003, pp. 325-354. doi:10.1016/S0022-460X(02)01393-7

[2] G. Rega, “Non-Linear Vibrations of Suspended Cables; Part I: Modeling and Analysis,” Journal of Applied Mechanics Review, Vol. 57, No. 6, 2004, pp. 443-478.
doi:10.1115/1.1777224

[3] G. Rega, “Non-Linear Vibrations of Suspended Cables; Part II: Deterministic Phenomena,” Journal of Applied Mechanics Review, Vol. 57, No. 6, 2004, pp. 479-514.
doi:10.1115/1.1777225

[4] S. R. Nielsen and P. H. Kirkegaard, “Super and Combinatorial Harmonic Response of Flexible Inclined Cables with Small Sag,” Journal of Sound and Vibration, Vol. 251, No. 1, 2002, pp. 79-102.
doi:10.1006/jsvi.2001.3979

[5] G. Zheng, J. M. Ko and Y. O. Ni, “Super-Harmonic and Internal Resonances of a Suspended Cable with Nearly Commensurable Natural Frequencies,” Nonlinear Dynamics, Vol. 30, No. 1, 2002, pp. 55-70.
doi:10.1023/A:1020395922392

[6] W. Zhang and Y. Tang, “Global Dynamics of the Cable under Combined Parametrical and External Excitations,” International Journal of Non-Linear Mechanics, Vol. 37, No. 3, 2002, pp. 505-526.
doi:10.1016/S0020-7462(01)00026-9

[7] A. H. Nayfeh, H. Arafat, C. M. Chin and W. Lacarbonara, “Multimode Interactions in Suspended Cables,” Journal of Vibration and Control, Vol. 8, No. 3, 2002, pp. 337-387. doi:10.1177/107754602023687

[8] H. Chen and Q. Xu, “Bifurcation and Chaos of an Inclined Cable,” Nonlinear Dynamics, Vol. 57, No. 2-3, 2009, pp. 37-55.
doi:10.1007/s11071-008-9418-3

[9] M. M. Kamel and Y. S. Hamed, “Non-Linear Analysis of an Inclined Cable under Harmonic Excitation,” Acta Mechanica, Vol. 214, No. 3-4, 2010, pp. 315-325.
doi:10.1007/s00707-010-0293-x

[10] A. Abe, “Validity and Accuracy of Solutions for Nonlinear Vibration Analyses of Suspended Cables with One-To-One Internal Resonance,” Nonlinear Analysis: Real World Applications, Vol. 11, No. 4, 2010, pp. 2594-2602.
doi:10.1016/j.nonrwa.2009.09.006

[11] N. Srinil, G. Rega and S. Chucheepsakul, “Two-To-One Resonant Multi-Modal Dynamics of Horizontal/Inclined Cables. Part I: Theoretical Formulation and Model Validation,” Nonlinear Dynamics, Vol. 48, No. 3, 2007, pp. 231-252. doi:10.1007/s11071-006-9086-0

[12] N. Srinil and G. Rega, “Two-To-One Resonant Multi-Modal Dynamics of Horizontal/Inclined Cables. Part II: Internal Resonance Activation Reduced-Order Models and Nonlinear Normal Modes,” Nonlinear Dynamics, Vol. 48, No. 3, 2007, pp. 253-274.
doi:10.1007/s11071-006-9087-z

[13] R. Alaggio and G. Rega, “Characterizing Bifurcations and Classes of Motion in the Transition to Chaos through 3D-Tori of a Continuous Experimental System in Solid Mechanics,” Physica D, Vol. 137, No. 1, 2000, pp. 70-93.
doi:10.1016/S0167-2789(99)00169-4

[14] G. Rega and R. Alaggio, “Spatio-Temporal Dimensionality in the Overall Complex Dynamics of an Experimental Cable/Mass System,” International Journal of Solids and Structures, Vol. 38, No. 10-13, 2001, pp. 2049-2068.
doi:10.1016/S0020-7683(00)00152-9

[15] A. Gonzalez-Buelga, S. A. Neild, D. J. Wagg and J. H. G. Macdonald, “Modal Stability of Inclined Cables Subjected to Vertical Support Excitation,” Journal of Sound and Vibration, Vol. 318, No. 3, 2008, pp. 565-579.
doi:10.1016/j.jsv.2008.04.031

[16] N. C. Perkins, “Modal Interactions in the Non-Linear Response of Inclined Cables under Parametric/External Excitation,” International Journal of Non-linear Mechanics, Vol. 27, No. 2, 1992, pp. 233-250.
doi:10.1016/0020-7462(92)90083-J

[17] C. L. Lee and N. C. Perkins, “Nonlinear Oscillations of Suspended Cables Containing a Two-To-One Internal Resonance,” Nonlinear Dynamics, Vol. 3, 1992, pp. 465-490.

[18] C. L. Lee and N. C. Perkins, “Three-Dimensional Oscillations of Suspended Cables Involving Simultaneous Internal Resonance,” Proceedings of ASME Winter Annual Meeting AMD-14, 1992, pp. 59-67.

[19] M. Eissa and M. Sayed, “A Comparison between Passive and Active Control of Non-Linear Simple Pendulum Part-I,” Mathematical and Computational Applications, Vol. 11, No. 2, 2006, pp. 137-149.

[20] M. Eissa and M. Sayed, “A Comparison between Passive and Active Control of Non-Linear Simple Pendulum Part-II,” Mathematical and Computational Applications, Vol. 11, No. 2, 2006, pp. 151-162.

[21] M. Eissa and M. Sayed, “Vibration Reduction of a Three DOF Non-Linear Spring Pendulum,” Communication in Nonlinear Science and Numerical Simulation, Vol. 13, No. 2, 2008, pp. 465-488.
doi:10.1016/j.cnsns.2006.04.001

[22] M. Sayed, “Improving the Mathematical Solutions of Nonlinear Differential Equations Using Different Control Methods,” Ph.D. Thesis, Menofia University, Egypt, November 2006.

[23] M. Sayed and Y. S. Hamed, “Stability and Response of a Nonlinear Coupled Pitch-Roll Ship Model under Parametric and Harmonic Excitations,” Nonlinear Dynamics, Vol. 64, No. 3, 2011, pp. 207-220.
doi:10.1007/s11071-010-9841-0

[24] M. Sayed and M. Kamel, “Stability Study and Control of Helicopter Blade Flapping Vibrations,” Applied Mathematical Modelling, Vol. 35, No. 6, 2011, pp. 2820-2837.
doi:10.1016/j.apm.2010.12.002

[25] M. Sayed and M. Kamel, “1:2 and 1:3 Internal Resonance Active Absorber for Non-Linear Vibrating System,” Applied Mathematical Modelling, Vol. 36, No. 1, 2012, pp. 310-332.
doi:10.1016/j.apm.2011.05.057

[26] Y. A. Amer and M. Sayed, “Stability at Principal Resonance of Multi-Parametrically and Externally Excited Mechanical System,” Advances in Theoretical and Applied Mechanics, Vol. 4, No. 1, 2011, pp. 1-14.

[27] M. Sayed, Y. S. Hamed and Y. A. Amer, “Vibration Reduction and Stability of Non-Linear System Subjected to External and Parametric Excitation Forces under a Non- linear Absorber,” International Journal of Contemporary Mathematical Sciences, Vol. 6, No. 22, 2011, pp. 1051-1070.

[28] A. H. Nayfeh, “Non-linear Interactions”, Wiley/Inter-Science, New York, 2000.