Back
 AM  Vol.2 No.12 , December 2011
Propagation of Torsional Surface Waves under the Effect of Irregularity and Initial Stress
Abstract: The present paper has been framed to study the influence of irregularity, initial stress and porosity on the propagation of torsional surface waves in an initially stressed anisotropic poro-elastic layer over a semi-infinite heterogeneous half space with linearly varying rigidity and density due to irregularity at the interface. The irregularity has been taken in the half-space in the form of a parabola. It is observed that torsional sur- face waves propagate in this assumed medium. In the absence of irregularity the velocity of torsional surface wave has been obtained. Further, it has been seen that for a layer over a homogeneous half space, the velo- city of torsional surface waves coincides with that of Love waves.
Cite this paper: nullS. Gupta, D. Majhi, S. Vishwakarma and S. Kundu, "Propagation of Torsional Surface Waves under the Effect of Irregularity and Initial Stress," Applied Mathematics, Vol. 2 No. 12, 2011, pp. 1453-1461. doi: 10.4236/am.2011.212207.
References

[1]   J. D. Achenbach, “Wave Propagation in Elastic Solids,” North Holland Publishing Comp., New York, 1973

[2]   W. M. Ewing, W. S. Jardetzky and F. Press, “Elastic Waves in LAYERED Media,” McgrawHill, New York, 1957.

[3]   M. Bath, “Mathematical Aspects of Seismology,” Elsvier Publishing Comp., New York, 1968.

[4]   L. Rayleigh, “On Waves Propagated along Plane Surface of an Elastic Solid,” Proceedings of the London Mathematical Society, Vol. 17, No. 3, 1885, pp. 4-11. doi:10.1112/plms/s1-17.1.4

[5]   H. G. Georgiadis, I. Vardoulakis and G. Lykotrafitis “Torsional Surface Waves in a Gradient-Elastic Half Space,” Wave Motion, Vol. 31, No. 4, 2000, pp. 333-348. doi:10.1016/S0165-2125(99)00035-9

[6]   E. Meissner, “Elastic Oberflachenwellen Mit Dispersion in Einem Inhomogeneous Medium,” Viertlagahrsschriftder Naturforschenden Gesellschaft, Zurich, Vol. 66, 1921, pp. 181-195 .

[7]   I. Vardoulakis, “Torsional Surface Waves in Inhomogeneous Elastic Media,” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 8, No. 3, 1984, pp. 287-296.

[8]   S. Dey, A. K.Gupta and S. Gupta, “Propagation of Torsional Surface Waves in a Homogeneous Substratum over a Heterogeneous Half-Space,” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 20, 1996, pp. 287-294. doi:10.1002/(SICI)1096-9853(199604)20:4<287::AID-NAG822>3.0.CO;2-2

[9]   M. A. Biot, “Theory of Deformation of a Porous Viscoelastic Anisotropic Solid,” Journal of Applied Physics, Vol. 27, No. 5, 1956, pp. 459-467. doi:10.1063/1.1722402

[10]   M. A. Biot, “Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid,” Journal of the Acoustical Society of America, Vol. 28, No. 2, 1956, pp. 168-178. doi:10.1121/1.1908239

[11]   M. J. Buckingham, “Theory of Compressional and Shear Waves in Fluid-Like Marine Sediments,” Journal of the Acoustical Society of America, Vol. 103, No. 1, 1998, pp. 288-299. doi:10.1121/1.421091

[12]   M. D. Sharma and M. L. Gogna, “Propagation of Love Waves in an Initially-Stressed Medium Consisting of sandy Layer Lying over a Liquid Saturated Porous Solid Half-Space,” Journal of the Acoustical Society of America, Vol. 89, No. 6, 1991, pp. 2584-2588. doi:10.1121/1.400697

[13]   M. D. Sharma, R. Kumar and M. L. Gogna, “Surface Wave Propagation in a Transversely Isotropic Elastic Layer Overlying a Liquid-Saturated Porous Solid Half-Space and Lying under a Uniform Layer of Liquid,” Pure and Applied Geophysics, Vol. 133, No. 3, 1990, pp. 523-539. doi:10.1007/BF00878003

[14]   M. D. Sharma, R. Kumar and M. L. Gogna, “Surface Wave Propagation in a Liquid-Saturated Porous Layer Over-Lying a Homogeneous Transversely Isotropic Half-Space and Lying under a Uniform Layer of Liquid,” International Journal of Solids and Structures, Vol. 27, 1991, pp. 1255-1267. doi:10.1016/0020-7683(91)90161-8

[15]   M. A. Biot, “Influence of Initial Stress on Elastic Waves,” Journal of Applied Physics, Vol. 11, No. 8, 1940, pp. 522-530. doi:10.1063/1.1712807

[16]   A. Chattopadhyay, S. Bose and M. Chakraborty, “Reflection of Elastic Waves under Initial Stress at a Free Surface,” Journal of the Acoustical Society of America, Vol. 72, No. 1, 1982, pp. 255-263. doi:10.1121/1.387987

[17]   B. K. Kar and V. K. Kalyani, “Reflection and Refraction of SH-Waves Due to the Presence of a Sandwiched Initially Stressed Sandy Layer,” Geophysical research bulletin, Vol. 25, No. 3, 1987, pp. 117-124.

[18]   S. Dey and S. K. Addy, “Reflection of Plane Waves under Initial Stress at a Free Surface,” International Journal of Non-Linear Mechanics, Vol. 12, No. 6, 1977, pp. 371-381. doi:10.1016/0020-7462(77)90038-5

[19]   M. A. Biot, “Mechanics of Incremental Deformation,” Wiley, New York, 1965

[20]   W.H. Weiskopf, “Stresses in Soils under a Foundation,” Journal of the Franklin Institute, Vol. 239, No. 6, 1945, pp. 445-465. doi:10.1016/0016-0032(45)90189-X

 
 
Top