JWARP  Vol.3 No.12 , December 2011
Flocculation of Kaolinite Suspensions in Water by Coconut Cream Casein
Abstract: The flocculation of kaolinite colloidal particles was carried out at pH = 6 in suspension of initial turbidity varying between 24 NTU and 102 NTU by a casein extracted from Cocos nucifera cream. During Jar-test essays, 90% to 99% of colloids were eliminated in the sediments. The optimal doses of casein used depend on the initial colloids concentrations of the suspension and were found to be 60 mg/L and 100 mg/L respectively for suspensions having turbidity of 24 NTU and 102 NTU. The corresponding residual turbidity are respectively 2.80 NTU and 10.22 NTU for clarified water. The structural analysis of the freeze-dried sediments by FTIR shows sharp adsorption bands at 1558 cm–1 and 1653 cm–1, indicating the presence of casein in the sediment. The flocculation process between the particles of kaolinite and the coconut casein is adsorption and bridging.
Cite this paper: nullJ. Fatombi, J. Mbey, T. Aminou, B. Lartiges, N. Topanou, O. Barres and R. Josse, "Flocculation of Kaolinite Suspensions in Water by Coconut Cream Casein," Journal of Water Resource and Protection, Vol. 3 No. 12, 2011, pp. 918-924. doi: 10.4236/jwarp.2011.312102.

[1]   C. T. Driscoll and R. D. Letterman, “Factors Regulating Residual Aluminum Concentrations in Treated Waters,” Environmetrics, Vol. 6, No. 3, 1995, pp. 287-305. doi:10.1002/env.3170060306

[2]   J. L. Stauber, T. M. Florence, C. M. Davies, M. S. Adams and S. J. Buchanan, “Bioavailability of Al in Alum Trea- ted Drinking Water,” Journal of American Water Works Association, Vol. 91, No. 11, 1999, pp. 84-93.

[3]   D. R. C. McLachlan, “Aluminum and the Risk for Alz- heimer’s Disease,” Environmetrics, Vol. 6, No. 3, 1995, pp. 233-275. doi:10.1002/env.3170060303

[4]   Z. Lu, “Medicament of Water Treatment,” Publishing Com- pany of Chemical Industry, Beijing, 2002, pp. 100-102.

[5]   B. Bolto and J. Gregory, “Organic Polyelectrolytes in Wa- ter Treatment,” Water Research, Vol. 41, No. 11, 2007, pp. 2301-2324. doi:10.1016/j.watres.2007.03.012

[6]   T. Okuda, A. U. Baes, W. Nishijima and M. Okada, “A Iso- lation and Characterization of Coagulant Extracted from Moringa oleifera Seed by Salt Solution,” Water Research, Vol. 32, No. 2, 2001, pp. 405-410. doi:10.1016/S0043-1354(00)00290-6

[7]   K. A. Ghebremichael, K. R. Gunaratna, H. Henriksson, H. Brumer and G. Dalhammar, “A Simple Purification and Activity Assay of the Coagulant Protein from Moringa oleifera Seed,” Water Research, Vol. 39, No. 11, 2005, pp. 2338-2344. doi:10.1016/j.watres.2005.04.012

[8]   H. M. Kwaambwa, M. Hellsing and A. R. Rennie, “Adsorption of a Water Treatment Protein from Moringa olei- fera Seeds to a Silicon Oxide Surface Studied by Neutron Reflection,” Langmuir, Vol. 26, No. 6, 2010, pp. 3902- 3910. doi:10.1021/la9031046

[9]   K. J. Fatombi, R. G. Jossè, D. Mama and T. Aminou, “Etu- de de l’Activité Floculante de la Caséine Acide de la Crème de Cocos nucifera sur la Clarification des Eaux de Surface,” Revue des Sciences de l’Eau, Vol. 22, No. 1, 2009, pp. 93-101.

[10]   A. Njoya, C. Nkoumbou, C. Grosbois, D. Njopwouo, D. Njo- ya, A. Courtin-Nomade, J. Yvon and F. Martin, “Genesis of Mayouom Kaolin Deposit (Western Cameroon),” Ap- plied Clay Science, Vol. 32, No. 1-2, 2006, pp. 125-140. doi:10.1016/j.clay.2005.11.005

[11]   J. M. Siéliéchi, B. S. Lartiges, G. J. Kayem, S. Hupont, C. Frochot, J. Thieme, J. Ghanbaja, J. B. d’Espinose de la Caillerie, O. Barrès, R. Kamga, P. Levitz and L. J. Michot, “Changes in Humic Acid Conformation during Co- agulation with Ferric Chloride: Implications for Drinking Water Treatment,” Water Research, Vol. 42, No. 8-9, 2008, pp. 2111-2123. doi:10.1016/j.watres.2007.11.017

[12]   A. Ndabigengesere, K. Narasiah and B. G. Talbot, “Active Agents and Mechanisms of Coagulation of Turbid Water Using Moringa oleifera,” Water Research, Vol. 29, No. 2, 1995, pp. 703-710. doi:10.1016/0043-1354(94)00161-Y

[13]   S. H. Lee, S. O. Lee, K. L. Jang and T. H. Lee, “Microbial Flocculant from Arcuadendron SP-49,” Biotechnological Letters, Vol. 17, No. 1, 1995, pp. 95-105.

[14]   A. Dong, J. Matsuura, S. D. Allison, E. Chrisman, M. C. Manning and J. F. Carpenter, “Infrared and Circular Di- chroism Spectroscopic Characterization of Structural Dif- ferences Between-Lactoglobulin A and B,” Biochemistry, Vol. 35, No. 5, 1996, pp. 1450-1457.

[15]   H. Dave, A. Troullier, I. Mus-Veteau, M. Dunach, G. Leb- lanc and E. Padros, “Secondary Structure Components and Properties of The Melibiose Permease from Esche- richia coli: a Fourier Transform Infrared Spectroscopy Analysis,” Biophysical Journal, Vol. 79, No. 2, 2000, pp. 747-755. doi:10.1016/S0006-3495(00)76332-6

[16]   V. Cabiaux, K. A. Oberg, P. Pancoska, T. Walz, P. Agre and A. Angel, “Secondary Structures Comparison of Aq- uaporin-1 and Bacteriorhodopsin: A Fourier Transform Infrared Spectroscopy Study of Two-Dimensional Mem- brane Crystals,” Biophysical Journal, Vol. 73, No. 1, 1997, pp. 406-417. doi:10.1016/S0006-3495(97)78080-9

[17]   S. J. Prestrelski, N. Tedeschi, T. Arakawa and J. F. Car- penter, “Dehydration-Induced Conformational Transitions in Proteins and Their Inhibition by Stabilizers,” Biophy- sical Journal, Vol. 65, No. 2, 1993, pp. 661-671. doi:10.1016/S0006-3495(93)81120-2

[18]   J. T. Pelton and L. R. McLean, “Review of Spectroscopic Methods for Analysis of Protein Secondary Structure,” Analytical Biochemistry, Vol. 277, No. 2, 2000, pp. 167- 176. doi:10.1006/abio.1999.4320

[19]   J.-P. Wang, Y.-Z. Chen, S.-J. Yuan, G.-P. Sheng and H.-Q. Yu, “Synthesis and Characterization of a Novel Cationic Chitosan-Based Flocculant with a High Water-Solubility for Pulp Mill Wastewater Treatment,” Water Research, Vol. 43, No. 20, 2009, pp. 5267-5275. doi:10.1016/j.watres.2009.08.040

[20]   B. Gu, J. Schmitt, Z. Chen, L. Liang and J. McCarthy, “Adsorption and Desorption of Natural Organic Matter on Iron Oxide: Mechanisms and Models,” Environmental Science & Technology, Vol. 28, No. 1, 1994, pp. 38-48. doi:10.1021/es00050a007

[21]   M. F. Dignac, S. Derenne, P. Ginertet, A. Bruchet, H. Knic- ker and C. Largeau, “Determination of Structure and Ori- gin of Refractory Organic Matter in Bio-Epurated Wa- stewater via Spectroscopic Methods. Comparaison of Con- ventional and Ozonation Treatments,” Environmental Sci- ence & Technology, Vol. 34, No. 16, 2000, pp. 3389- 3394. doi:10.1021/es9913838

[22]   A. G. El Samrani, B. S. Lartiges, E. Montagès-Pelletier, V. Kazparg, O. Barrès and J. Ghanbaja, “Clarification of Municipal Sewage with Ferric Chloride: The Nature of Coagulant Species,” Water Research, Vol. 38, No. 3, 2004, pp. 756-768. doi:10.1016/j.watres.2003.10.002

[23]   H. M. Kwambwa and R. Maikokera, “Infrared and Cir- cular Dichroism Spectroscopic Characterisation of Sec- ondary Structure Components of a Water Treatment Co- agulant Protein Extracted from Moringa oleifera Seeds,” Colloids Surf. B: Biointerface, Vol. 64, No. 1, 2008, pp. 118-125. doi:10.1016/j.colsurfb.2008.01.014

[24]   S. Olejnik, L. A. G. Aylmore, A. M. Posner and J. P. Qu- irk, “Infrared Spectra of kaolin Mineral-Dimethyl Sul- foxide Complexes,” Journal of Physical Chemistry, Vol. 72, No. 1, 1968, pp. 241-249. doi:10.1021/j100847a045

[25]   H. Marel and H. Beutelspacher, “Atlas of Infrared Spec- troscopy of Clay Minerais and Their Admixtures,” El- sevier Scientific, Amsterdam, 1976, p. 396.

[26]   J. Coates, “Interpretation of Infrared Spectra, a Practical Approach,” In: R. A. Meyers, Ed., Encyclopedia of Ana- lytical Chemistry, John Wiley & Sons Ltd, Chichester, 2000, pp. 10815-10837.

[27]   B. A. Imene and S. Ezzeddine, “Synthèse et Caractéri- sation d’un Hybride Organique-Inorganique à Partir d’une Argile Tunisienne par une Réaction à l’état Solide,” African Journal of Science and Techology, Vol. 9, No. 1, 2008, pp. 2-19.

[28]   A. G. El Samrani, N. Ouaini, V. Kazpard and Z. Saad, “Influence des Ligands Phosphatés sur le Mécanisme de Déstabilisation de Particules Collo?dales de Silice par le Chlorure Ferrique,” Lebanese Science Journal, Vol. 7, No. 1, 2006, pp. 103-112.