ABB  Vol.1 No.1 , April 2010
Growth rate data fitting of Yarrowia lipolytica NCIM 3589 using logistic equation and artificial neural networks
ABSTRACT
Growth rate of Yarrowia lipolytica NCIM 3589 was observed in a fermentation medium consisting of peptone, yeast extract, sodium chloride. Logistic equation was fitted to the growth data (time vs. biomass concentration) and compared with the prediction given by Artificial Neural Networks (ANN). ANN was found to be superior in describing growth characteristics. A single MATLAB programme is developed to fit the growth data by logistic equation and ANN.

Cite this paper
nullImandi, S. , Karanam, S. , Darsipudi, S. and Garapati, H. (2010) Growth rate data fitting of Yarrowia lipolytica NCIM 3589 using logistic equation and artificial neural networks. Advances in Bioscience and Biotechnology, 1, 47-50. doi: 10.4236/abb.2010.11007.
References
[1]   Dujon, B., Sherman, D., Fischer, G., Durrens, P., Casaregola, S., Lafontaine, I., De Montigny, J., Marck, C., Neuve´glise, C., Talla, E., Goard, N., Frangeul, L., Aigle, M., Anthouard, V., Babour, A., Barbe, V., Barnay, S., Blanchin, S., Beckerich, J.M., Beyne, E., Bleykasten, C., Boisrame, A., Boyer, J., Cattolico, L., Confanioleri, F., De Daruvar, A., Despons, L., Fabre, E., Fairhead, C., Ferry-Dumazet, H., Groppi, A., Hantraye, F., Hennequin, R., Jauniaux, N., Joyet, P., Kachouri, R., Kerrest, A., Koszul, R., Lemaire, M., Lesur, I., Ma, L., Muller, H., Nicaud, J.M., Nikolski, M., Oztas, S., Ozier-Kalogero- poulos, O., Pellenz, S., Potier, S., Richard, G.F., Straub, M.L., Suleau, A., Swennen, D., Tekaia, F., Wesolowski- Louvel, M., Westhof, E., Wirth, B., Zeniou-Meyer, M., Zivanovic, I., Bolotin-Fukuhara, M., Thierry, A., Bouchier, C., Caudron, B., Scarpelli, C., Gaillardin, C., Weissenbach, J., Wincker, P. and Souciet, J.L. (2004) Genome evolution in yeasts. Nature, 430, 35-44.

[2]   Barth, G. and Gaillardin, C. (1996) Yarrowia lipolytica in: nonconventional yeasts in biotechnology (Wolf, K., Ed.), A Handbook, Springer, Berlin, Heidelberg, New York, pp. 313-388.

[3]   Barth, G. and Gaillardin, C. (1997) Physiology and genetics of the dimorphic fungus Yarrowia lipolytica. FEMS Microbiology Reviews, 19, 219-237.

[4]   Barth, G., Beckerich, J.M., Dominguez, A., Kerscher, S., Ogrydziak, D., Titorenko, V. and Gaillardin, C. (2003) Functional genetics of Yarrowia lipolytica In: (de Winde, J.H., Ed.), Functional Genetics of Industrial Yeasts, Springer, Berlin, Heidelberg, New York, 227-271.

[5]   Dominguez, A., Ferminan, E., Sanchez, M., Gonzalez, F.J., Perez-Campo, F.M., Garcia, S., Herrero, A.B., San Vicente, A., Cabello, J., Prado, M., Iglesias, F.J., Choupina, A., Burguillo, F.J., Fernandez-Lago, L. and Lopez, M.C. (1998) Non-conventional yeasts as hosts for heterologous protein production. International Microbiology, 1, 131-142.

[6]   Nicaud, J.M., Madzak, C., van den Broek, P., Gysler, C., Duboc, P., Niederberger, P. and Gaillardin, C. (2002) Protein expression and secretion in the yeast Yarrowia lipolytica. FEMS Yeast Research, 2, 371-379.

[7]   Madzak, C., Gaillardin, C. and Beckerich, J.M. (2004) Heterologous protein expression and secretion in the nonconventional yeast Yarrowia lipolytica: a review. Journal of Biotechnology, 109, 63-81.

[8]   Dominguez, A., Ferminan, E. and Gaillardin, C. (2000) Yarrowia lipolytica: an organism amenable to genetic manipulation as a model for analyzing dimorphism in fungi. Contributions to Microbiology, 5, 151-172.

[9]   Titorenko, V.I., Smith, J.J., Szilard, R.K. and Rachubinski, R.A. (2000) Peroxisome biogenesis in the yeast Yarrowia lipolytica. Cell Biochemistry and Biophysics, 32, 21-26.

[10]   Titorenko, V.I. and Rachubinski, R.A. (2001) Dynamics of peroxisome assembly and function. Trends in Cell Biology, 11, 22-29.

[11]   Kerscher, S., Drose, S., Zwicker, K., Zickermann, V. and Brandt, U. (2002) Yarrowia lipolytica, a yeast genetic system to study mitochondrial complex I. Biochimica et Biophysica Acta, 1555, 83-91.

[12]   Kurtzman, C. and Fell, J., Eds., (1998). The yeasts: a taxonomy study, Elsevier, Amsterdam.

[13]   Imandi, S.B., Bandaru, V.V.R., Somalanka, S.R. and Garapati, H.R. (2007). Optimization of medium constitu- ents for the production of citric acid from byproduct glycerol using doehlert experimental design. Enzyme and Microbial Technology, 40, 1367-1372.

[14]   Shuler M.L. and Kargi, F. (2002). Bioprocess engineering-basic concepts, 2nd Edition, Prentice-Hall of India pvt ltd, New Delhi.

[15]   Demuth H., Beale M. and Hagan M. (2006). Neural network toolbox for use with MATLAB. Neural Network Toolbox, IEE Savoy Place, London.

 
 
Top