NS  Vol.2 No.3 , March 2010
Signature of chaos in the semi quantum behavior of a classically regular triple well heterostructure
Abstract: We analyze the phenomenon of semiquantum chaos in the classically regular triple well model from classical to quantum. His dynamics is very rich because it provides areas of regular be-havior, chaotic ones and multiple quantum tun-neling depending on the energy of the system as the Planck’s constant varies from 0 to 1. The Time Dependent Variational Principle TDVP using generalized Gaussian trial wave function, which, in many-body theory leads to the Hartree Fock Approximation TDHF, is added to the tech-niques of Gaussian effective potentials and both are used to study the system. The extended classical system with fluctuation variables non- linearly coupled to the average variables exhibit energy dependent transitions between regular behavior and semi quantum chaos monitored by bifurcation diagram together with some numerical indicators.
Cite this paper: Lekeufack, T. , Yamgoue, S. and Kofane, T. (2010) Signature of chaos in the semi quantum behavior of a classically regular triple well heterostructure. Natural Science, 2, 145-154. doi: 10.4236/ns.2010.23024.

[1]   Cooper, F., Dawson, J.F., Meredith, D. and Shepard, H. (1994) Physical Review Letters, 72, 1337; Lichtenberg, A.J. and Lieberman, M.A. (1983) Regular and stochastic motion. Springer, New York.

[2]   Ringot, J., Lecocq, Y., Garreau, J.C. and Szriftgiser, P. (1999) Generation of phase-coherent laser beams for Raman spectroscopy and cooling by direct current modulation of a diode laser.European Physical Journal D, 7, 285; Ringot, J., Szriftgiser, P., Garreau, J.C., and Delande, D. (2000) Physical Review Letters, 85, 2741.

[3]   Tabor, M. (1989) Chaos and integrability in non linear dynamics. John Wiley and Sons, New York.

[4]   Mackey, R.S. and Meiss, J.D. (1987) Strong variation of global-transport properties in chaotic ensembles. Hamilt- onian dynamical systems, Adam Hilger, Bristel.

[5]   Berry, M.V. (1989) Quantum chaology, not quantum chaos.Physica Scripta, 40, 335.

[6]   Ozorio De Almeida, A. (1988) Hamiltonian systems: Chaos and quantization. Cambridge University Press, Cambridge.

[7]   Gutzwiller, M.C. (1990) Chaos in classical and quantum mechanics. Springer Verlag, New York.

[8]   Reichl, L.E. (1992) The transition to chaos in conservative classical systems: Quantum manifestations. Springer Verlag, New York.

[9]   Sengupta, S. and Chattaraj, P.K. (1996) Physics Letters A, 215, 119.

[10]   Kluger, Y., Eisenberg, J.M., Svetisky, B., Cooper, F. and Mottola, E. (1991) Physical Review Letters, 67, 2427.

[11]   Pradhan, T. and Khare, A.V. (1973) American Journal of Physics, 41, 59.

[12]   Jona Lasinio, G., Presilla, C. and Capasso, F. (1992). Physical Review Letters, 68, 2269.

[13]   Leo, K., Shah, J., Gobel, E.O., Damen, T.C., Schmitt S., Ring, Schafer, W. and Kholer, K. (1991) Physical Review Letters, 66, 201.

[14]   Elze, H.T. (1995) Quantum decoherence, entropy and thermalization in strong interactions at high energy. Nuclear Physics B, 436, 213; Nuclear Physics B, 39, 169.

[15]   Jackiw, R. and Kerman, A. (1978) Physics Letters A, 71, 158.

[16]   Heller, E.J. (1975) Calculations and mathematical techniques in atomic and molecular physics. Journal of Chemical Physics, 62, 1544; Heller, E.J. and Sundberg, R.L. (1985) Chaotic behavior in quantum systems. Plenum Press, New York, 255.

[17]   Pattanayak, A.K. and Schieve, W.C. (1994) Physical Review Letters, 72, 2855;(1992) Physical Review Letters,46, 1821, Proceedings from workshop in honor of Sundarshan., E.G.G. Gleeson, A.M., Ed., (world scientific,Singapore, in press).

[18]   Cooper, F., Pi, S.Y. and Stancioff, P.N. (1986) Physical Review D, 34, 3831.

[19]   Kovner, A. and Roseinstein, B. (1983) Physical Review D, 39, 2332.

[20]   Littlejohn, R.G. (1988) Physical Review Letters, 61, 2159.

[21]   Tannoudji, C.C., Diu, B. and Laloe, F. (1988) Quantum mechanics, Ed., Masson.

[22]   Perez, J.P. and Saint Crieq Chery, N. (1986) Relativity and Quantisation, University Paul Sabatier, Toulouse, Ed., Masson.

[23]   Gaudaire, M. (1969) Propriete de la matiere: Onde et Matiere, Colorado Dunod University, Orsay.

[24]   Ott, E. (1997) Chaos in dynamical systems. Cambridge University Press, Cambridge.

[25]   Carlson, L. and Schieve, W.C. (1989) Physical Review A, 40, 5896.

[26]   Stevenson, P. (1984) Physical Review D, 30, 1712; (1985) Physical Review D, 32, 1389.

[27]   Toda, M. (1974) Instability of trajectories of the lattice with cubic nonlinearity. Physics Letters A, 48, 335.

[28]   Brumer, P. and Duff, J.N. (1976) Journal of Chemical Physics, 65, 3566.

[29]   Capasso, F. and Datta, S. (1990) Bandgap and interface engineering for advanced electronic and photonic devices.Physics Today, 43(2), 74.

[30]   Kramer, B. (1991) Quantum coherence in mesoscopic systems. Plenum, New York.

[31]   Presilla, C., Jona – Lasinio, G.. and Capasso, F. (1991) Nonlinear feedback oscillations in resonant tunneling through double barriers.Physical Review B, 43, 5200

[32]   Tchoukuegno, R. and Woafo, P. (2002) Physical D 167, 86; Tchoukuegno, R., Nana, B.R. and Woafo, P. (2002) Physical Review A, 304, 362; (2003) International Journal of Non-Linear Mechanics, 38, 531.

[33]   Jing, Z.J., Yang, Z.Y. and Jiang, T. (2006) Bifurcation and chaos in discrete-time predator–prey system.Chaos, Solitons and Fractals, 27, 722.

[34]   Sun, Z.K., Xu, W. and Yang, X.L. (2006) Chaos, Solitons and Fractals, 27, 778.

[35]   Blum, T.C. and Elze, H.T. (1996) Semiquantum chaos in the double well.Physical Review E, 53, 3123.

[36]   Zaslavsky, G.M. (1985) Chaos in dynamic systems. Harwood Academic, Chur, Switzerland.

[37]   Wolf, A., Swift, J. B., Swinney, H.L. and Vastano, J.A. (1985) Determining Lyapunov exponents from a time series.Physical Review D, 16, 285.

[38]   Melnikov, V.K. (1963) On the stability of a center for time-periodic perturbations. Transactions of the Moscow Mathematical Society, 12, 1.

[39]   Gucken, H. J. and Holmes, P. (1983) Nonlinear oscillations, dynamical systems and bifurcations of vector fields. Springer Verlag, Berlin.

[40]   Yamgoue, S.B. and Kofane, T.C. (2002) The subharmonic Melnikov theory for damped and driven oscillators revisited .International Journal of Bifurcation and Chaos, 8, 1915; (2003) Chaos, Solitons & Fractals, 17, 155.

[41]   Churchill, R.C., Pecelli, G. and Rod, L. (1975) J. Diff. Eqs. 17, 329; (1977) J. Diff. Eqs. 24, 329; Churchill, R.C. and Rod, D.L. (1976) Ibid. 21, 39; (1976) Ibid. 21, 66; (1980) Ibid. 37, 23.