[1] Tusher, V.G., Tibshirani, R. and Chu, G. (2001) Significant analysis of microarrays applied to the ionizing radiation response. PNAS, 98, 5116-5121.
[2] Long, A. D., Mangalam, H. J., Chan, B. Y. P., Tolleri, L., Hatfield, W. G. and Baldi, P. (2001) Improved statistical inference from DNA microarray data using analysis of variance and a Bayesian statistical frame work, 276, 19937-19944.
[3] Kerr, M.K., Martin, M. and Churchill, G. (2000) Analysis of variance for gene expression microarray data, Journal of Computational Biology, 7, 819-837.
[4] Thomas, J.G., Olson, J.M., Tapscott, S.J. and Zhao, L. P. (2001) An efficient and robust statistical modelling approach to discover differentially expressed genes using genomic expression profiles. Genome Research, 11, 1227-1236.
[5] Baldi, P. L. and Long, A. D. (2001) A Bayesian framework for the analysis of microarray expression data: Regularized t-test and statistical inference of gene changes. Bioinformatics, 17, 509-519.
[6] Kendziorski, C. M., Newton, M. A., Lan, H. And Gould, M. N. (2003) On parametric empirical Bayes methods for comparing multiple groups using replicated gene expression profiles. Statistics in Medicine, 22, 819-837.
[7] Newton, M., Noueiry, A., Ahlquist, P., Sarkar, D. (2004) Detecting differential gene expression with a semiparametric hierarchical mixture method. Biostatistics, 5(2), 155-176.
[8] Smyth, G. K. (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Statistical Applications in Genetics and Molecular Biology, 3(1), Article 3.
[9] Efron, B., Tibshirani R., Storey, J. D., Tusher, V. (2001) Empirical Bayes analysis of a microarray experiment, Journal of the American Statistical Association, 96, 1151-1160.
[10] Efron, B., Tibshirani, R., Gross, V. and Chu, G. (2000) Microarrays and their use in a comparative experiment, Technical report, Statistics Department, Standard University.
[11] Dudoit, S., Yang, H. Y., Callow, J. M. and Speed, P. T. (2002) Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments. Statistica Sinica, 111-139.
[12] Troyanskaya, O. G., Garber, M. E., Brown, P. O., Botstein, D. and Altman, R. B. (2002) Nonparametric methods for identifying differentially expressed genes in microarray data. Bioinformatics, 18, 1454-1461.
[13] Broberg, P. (2003) Ranking genes with respect to differential expression, Genome Biology, 4, R41.
[14] Pan, W., Lin, J. and Le, C. (2003) A mixture model approach to detecting differentially expressed genes with microarray data. Functional & integrative genomics, 3, 117-124.
[15] Chu, G., Narasimhan, B., Tibshirani, R. and Tusher, V. SAM “significance analysis” of microarrays-users guide and technical document, http://www-stat.stanford.edu/~tibs/ SAM/sam.pdf.
[16] Zhang, S. (2007) A comprehensive evaluation of SAM, the SAM R-package and a simple modification to improve its performance, BMC Bioinformatics, 8, 230.
[17] Benjamini, Y. and Hochberg, Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, 57, 289-300.
[18] Storey, J.D. and Tibshirani, R. (2003) Statistical significance for genomewide studies. PNAS, 100, 9440-9445.
[19] Liu, C. and Rubin, D. (1995) ML estimation of the t distribution using EM and its extensions ECM and ECME. Statistica Sinica, 5, 19-39.
[20] Jiao, S. and Zhang, S. (2008) The t-mixture model approach for detecting differentially expressed genes in microarrays. Functional & Integrative Genomics, 8, 181-186.
[21] Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., Coller, H., Loh, M. L., Downing, J.R. and Caligiuri, M. (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 285, 531-537.