JBiSE  Vol.3 No.3 , March 2010
Tunable optical gradient trap by radial varying polarization Bessel-Gauss beam
Abstract: Optical tweezers play an important role in many domains, especially in life science. And optical gradient force is necessary for constructing optical tweezers. In this paper, the optical gradient force in the focal region of radial varying polarization Bessel- Gauss beam is investigated numerically by means of vector diffraction theory. Results show that the beam parameter and vary rate parameter that indicates the change speed of polarization rotation angle affect the optical gradient force pattern very considerably, and some novel force distributions may come into being, such as multiple force minimums, force ring, and force crust. Therefore, the focusing of radial varying polarization Bessel-Gauss beam can be used to construct optical traps.
Cite this paper: nullGao, X. , Hu, S. , Li, J. , Ding, Z. , Guo, H. and Zhuang, S. (2010) Tunable optical gradient trap by radial varying polarization Bessel-Gauss beam. Journal of Biomedical Science and Engineering, 3, 304-307. doi: 10.4236/jbise.2010.33041.

[1]   Ashkin, A., Dziedzic, J.M., Bjorkholm, J.E. and Chu, S. (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Optics Letters, 11, 288- 290.

[2]   MacDonald, M.P., Paterson, L., Volke-Sepulveda, K., Arlt, J., Sibbett, W. and Dholakia, K. (2002) Creation and manipulation of three-dimensional optically trapped structures. Science, 296, 1101-1103.

[3]   Vladlen, G.S., Anton, S.D., Andrei, V.R., Wieslaw, K. and Yuri, S.K. (2009) Optical guiding of absorbing nanoclusters in air. Optics Express, 17, 5743-5757.

[4]   Grier, D.G. (2003) A revolution in optical manipulation. Nature, 424, 810-816.

[5]   Wang, M.D., Schnitzer, M.J., Yin, H., Landick, R., Gelles, J. and Block, S.M. (1998) Force and velocity measured for single molecules of RNA polymerase. Science, 282, 902-907.

[6]   Eriksen, R.L., Mogensen, P.C. and Glückstad, J. (2002) Multiple-beam optical tweezers generated by the generalized phase-contrast method. Optics Letters, 27, 267-269.

[7]   Curtis, J.E., Koss, B.A. and Grier, D.G.. (2002) Dynamic holographic optical tweezers. Optics Communications, 207, 169-175.

[8]   Visscher, K. and Brakenhoff, G.J. (1992) Theoretical study of optically induced forces on spherical particles in a single beam trap I: Rayleigh scatterers, Optik, 89,174-180.

[9]   Durnin, J. (1987) Exact solutions for nondiffracting beams. I. The scalar theory. Journal of the Optical Society America Associates, 4, 651-654.

[10]   Li, Y., Gurevich, V., Kirchever, M., Katz, J. and Marom, E. (2001) Propagation of anistropic Bessel-Gaussian beams: sidelobe control, mode selection, and field depth. Applied Optics, 40, 2709-2721.

[11]   Yang, Y. and Li, Y. (2007) Spectral shifts and spectral switches of a pulsed Bessel-Gauss beam from a circular aperture in the far field. Optics & Laser Technology, 39, 1478-1484.

[12]   Igor, A. and Litvin Andrew, F. (2008) Bessel-Gauss resonator with internal amplitude filter. Optics Communications, 281, 2385-2392.

[13]   Zhan, Q. and Leger, J.R. (2002) Focus shaping using cylindrical vector beams. Optics Express, 10, 324-330.

[14]   Youngworth, K.S. and Brown, T.G. (2000) Focusing of high numerical aperture cylindrical-vector beams. Optics Express, 7, 77-87.

[15]   Elijah, Y., Yew, S., Colin, J. and Sheppard, R. (2007) Tight focusing of radially polarized Gaussian and Bessel- Gaussian beams. Optics Letters, 32, 3417-3419.

[16]   Garces-Chaves, V., McGloin, D., Melville, H., Sibbett, W. and Dholakia, K. (2002) Simultaneous micromanipulation in multiple planes using a self reconstructing light beam. Nature, 419, 145-148.