[1] Bartel, D.P. (2004) MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell, 116, 281-297.
[2] Lytle, J.R., Yario, T.A. and Steitz, J.A. (2007) Target mRNAs are repressed as efficiently by microRNA- binding sites in the 5?€2 UTR as in the 3?€2 UTR. Proceedings of the National Academy of Sciences, 104, 9667-9672.
[3] Lim, L.P., Glasner, M.E., Yekta, S., Burge, C.B. and Bartel, D. P. (2003) Vertebrate MicroRNA Genes. Science, 299, 1540.
[4] Lim, L.P., Lau, N.C., Weinstein, E.G., Abdelhakim, A., Yekta, S., Rhoades, M.W., Burge, C.B. and Bartel, D.P. (2003) The microRNAs of Caenorhabditis elegans. Genes & Development, 17, 991-1008.
[5] Weber, M.J. (2005) New human and mouse microRNA genes found by homology search. FEBS Journal, 272, 59-73.
[6] Lai, E., Tomancak, P., Williams, R. and Rubin, G. (2003) Computational identification of Drosophila microRNA genes. Genome Biology, 4, R42.
[7] Grad, Y., Aach, J., Hayes, G.. D., Reinhart, B. J., Church, G.M., Ruvkun, G. and Kim, J. (2003) Computational and Experimental Identification of C. elegans microRNAs. Molecular Cell, 11, 1253-1263.
[8] Bartel, D. P. (2004) MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell, 116, 281.
[9] Lai, E. (2004) Predicting and validating microRNA targets. Genome Biology, 5, 115.
[10] John, B., Enright, A.J., Aravin, A., Tuschl, T., Sander, C. and Marks, D.S. (2004) Human MicroRNA Targets. PLoS Biology, 2, e363.
[11] Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic acids research, 31 (13), 3406–3415.
[12] Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P. and Burge, C. B. (2003) Prediction of mammalian microRNA targets. Cell, 115, 787.
[13] Krek, A. et al. (2005) Combinatorial microRNA target predictions. Nature Genetics, 37, 495-500.
[14] Grun, D., Wang, Y.L., Langenberger, D., Gunsalus, K.C. and Rajewsky, N. (2005) MicroRNA target predictions across seven drosophila species and comparison to mammalian targets. PLoS Computational Biology, 1, e13.
[15] SaeTrom, O.L.A., Snove, O.J. and SaeTrom, P.A.L. (2005) Weighted sequence motifs as an improved seeding step in microRNA target prediction algorithms. RNA, 11, 995- 1003.
[16] Sung-Kyu, K., Jin-Wu, N., Wha-Jin, L. and Byoung-Tak, Z. (2005) A kernel method for microrna target prediction using sensible data and position-based features. In computational intelligence in bioinformatics and computational biology. Proceedings of the 2005 IEEE Symposiumon CIBCB, 1-7.
[17] Yan, X., et al. (2007) Improving the prediction of human microRNA target genes by using ensemble algorithm. FEBS Letters, 581, 1587.
[18] Thadani, R. and Tammi, M. (2006) MicroTar: Predicting microRNA targets from RNA duplexes. BMC Bioinformatics, 7, S20.
[19] Miranda, K.C., Huynh, T., Tay, Y., Ang, Y.S., Tam, W.L., Thomson, A. M., Lim, B. and Rigoutsos, I. (2006) A pattern-based method for the identification of microrna binding sites and their corresponding. Heteroduplexes, 126, 1203-1217.
[20] Yousef, M., Jung, S., Kossenkov, A.V., Showe, L.C. and Showe, M.K. (2007) Naive Bayes for microRNA target predictions machine learning for microRNA targetsed. Oxford University Press, 2987-2992.
[21] Tax, D.M.J. (2001) One-class classification; Concept- learning in the absence of counter-examples. Delft University of Technology ed.
[22] Sch?lkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J. and Williamson, R. C. (2001) Estimating the support of a high-dimensional distribution. Neural Computation, 13, 1443-1471.
[23] Chang, C.C. and Lin, C.J. (2001) LIBSVM: A library for support vector machinesed.
[24] Tax, D.M.J. (2005) DDtools, the data description toolbox for matlab. Delft University of Technology ed.
[25] Witten, I.H. and Frank, E. (2005) Data mining: Practical machine learning tools and techniques, Morgan Kaufmann, San Francisco.
[26] Sch?lkopf, B., Burges, C.J.C. and Smola, A.J. (1999) Advances in kernel methods. MIT Press, Cambridge.
[27] Vapnik, V. (1995) The Nature of Statistical Learning Theory, Springer.
[28] Mitchell, T. (1997) Machine Learning, McGraw Hill.
[29] McCallum, A.K. (1996) Bow: A toolkit for statistical language modeling, text retrieval, classification and clustering text retrieval, classification and clustering.
[30] Haussler, D. (1999) Convolution kernels on discrete structuresed, Technical Report UCSCCRL-99-10. Baskin School of Engineering, University of California, Santa Cruz.
[31] Pavlidis, P., Weston, J., Cai, J. and Grundy, W.N. (2001) Gene functional classification from heterogeneous data. Proceedings of the 5th Annual International Conference on Computational Biology, ACM Press, Montreal, 249- 255.
[32] Donaldson, I. et al. (2003) PreBIND and Textomy-mining the biomedical literature for protein-protein interactions using a support vector machine. BMC Bioinformatics, 4, 11.
[33] Breiman, L. (2001) Random Forests. Machine Learning 45, 5-32.
[34] Quinlan, J.R. (1993) C4.5: Programs for machine learning Morgan Kaufmann Publishers Inc.
[35] Sethupathy, P., Corda, B. and Hatzigeorgiou, A.G. (2006) TarBase: A comprehensive database of experimentally supported animal microRNA targets. RNA, 12, 192-197.
[36] Matthews, B. (1975) Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta, 405(2), 442-451.
[37] Kowalczyk, A. and Raskutti, B. (2002) One class SVM for yeast regulation prediction. SIGKDD Explorations, 4, 99-100.
[38] Spinosa, E.J. and Carvalho, A.C.P.L.F.d. (2005) Support vector machines for novel class detection. Bioinformatics Genetics and Molecular Research, 4, 608-615.
[39] Crammer, K. and Chechik, G. (2004) A needle in a haystack: Local one-class optimization. Proceedings of the 21st International Conference on Machine Learning, Banff, 26.
[40] Gupta, G. and Ghosh, J. (2005) Robust one-class clustering using hybrid global and local search. Proceedings of the 22nd International Conference on Machine Learning, ACM Press, Bonn, 273-280.
[41] Manevitz, L.M. and Yousef, M. (2001) One-class SVMs for document classification. Journal of Machine Learning Research, 139-154.
[42] Thirion, B. and Faugeras, O. (2004) Feature characterization in fMRI data: The information bottleneck approach. Medical Image Analysis, 8, 403.
[43] Koppel, M. and Schler, J. (2004) Authorship verification as a one-class classification problem. Proceedings of the 21st International Conference on Machine Learning, ACM Press, Banff, 62.
[44] Yousef, M., Jung, S., Showe, L. and Showe, M. (2008) Learning from positive examples when the negative class is undetermined-microRNA gene identificationed. Algorithms for Molecular Biology, 3, 2.